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1 CAPM

To truly understand Black-Litterman, it is essential to understand the CAPM as an equilibrium

model, and not just a pricing relation. Suppose there are two dates, t = 0; 1, and N risky assets

whose gross returns are distributed normally, R~N (�;�). Note that R is N � 1, � is N � 1, and

� is N � N . Asset 0 returns Rf at t = 1 (normalize the price of the risk-free asset is 1) with

probability 1. Let Q = R � �Rf denote the N � 1 vector of excess returns, where � is an N � 1

vector of 1�s.

1.1 The Model

There are a continuum of i 2 [0; 1] agents in the economy who take prices as given. Let  i denote

the N � 1 vector of dollar demand (not quantity) of each agent (i.e., let  ij = �ijpj if �ij is the

quantity of shares of asset j demanded by agent i). Each agent chooses an N � 1 vector of dollar

demand  i to maximize time 1 wealth, which follows the budget dynamics

W i = Rf
�
W i
0 �  0i�

�
+  0iR

= RfW
i
0 +  

0
i (R� �Rf )

= RfW
i
0 +  

0
iQ

The 0 symbol denotes "transpose." Agents have mean-variance utility, so they solve the problem

max
 i

U = max
 i

�
E
�
W i
�
� �i

2
V ar

�
W i
��

s:t: W i = RfW
i
0 +  

0
iQ

where �i is the risk-aversion for agent i. Letting � = E [Q] = E [R]�Rf denote the N � 1 vector

of expected excess returns, note that

E
�
W i
�
= RfW

i
0 +  

0
i�

V ar
�
W i
�
=  0i� i

so that the objective function is equivalent to

max
 i

�
 0i��

�i

2
 0i� i

�
(1)
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The �rst order conditions1 for each agent i are

�� �i� i = 0

so that

 �i = �i��1� (2)

where �i = 1=�i is the risk tolerance of agent _i.2

Let  S denote theN�1 vector of outstanding value of shares for the risky assets. In equilibrium,

the market clearing condition says that

Z
i
 0�i =  S

which implies Z
�i��1� =  S

1Note that (1) is actually an N -equation maximization problem. The �rst order condition comes from

d

d 0i

n
 0i� �

�i
2
 0i� i

o
where, using some matrix calculus,

@a0x

@x
= a =

@x0a

@x
@Ax

@x
= A

@x0Ax

@x
= x0

�
A0 +A

�
= 2x0A if A is symmetric

for any conformable matrix A and vectors a; x.
2Note that in the single asset case, this delivers the classic linear demand equation

��i =
1

�i
E [v]�RfP

V ar (v)
(3)

where v is the payo¤ and �i is the quantity of shares demanded. To see this, observe that (2) in the single-asset
case is equivalent to

 �i =
1

�i
E [R]�Rf
V ar (R)

To get the equation for ��i , note that

 i =
1

�i
E [R]�Rf
V ar (R)

=
1

�i
E [v] =P �Rf
V ar (v=P )

=
1

�i
P 2 (E [v] =P �Rf )

V ar (v)

= P
1

�i
E [v]�RfP

V ar (v)

which delivers (3) since  i = �iP:
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Thus equilibrium excess returns must satisfy

� = 
� S (4)

where 
 =
R
�i is the aggregate (average) risk aversion of market participants.

1.2 Equilibrium Beta

De�ne the market risk premium as

QM =
 0SQ

 0S�

and note that

�M = E [QM ] =
 0S�

 0S�

=

 0S� S
 0S�

using (4). Note also that

Cov (Q;QM ) =
� S
 0S�

V ar (QM ) =
 0S� S�
 0S�

�2
Using (4), we can then write

� = 
� S

=

� S
 0S�

 0S� S

( 0S�)
2


 0S� S
 0S�

= ��M (5)

for

� =
Cov (Q;QM )

V ar (QM )
(6)

Note, however, that this section is really just notation; equation (4) is the central result that gives

us the classic relationship between expected returns and demand.
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1.3 What did we learn?

Equations (5) and (6) are the familiar expressions of � found in typical undergraduate texts. The

usual interpretation of � is that it represents the "sensitivity of returns to market returns." While

this statement is correct, the derivations above highlight the deeper equilibrium interpretation of �:

equations (5) and (6) say that � is the contribution of an asset to the total variance of the aggregate

portfolio, and that an asset earns a high risk premium if and only if it contributes a signi�cant

amount of variance to the aggregate portfolio. This is a powerful insight.

1.3.1 Predictions

Three speci�c predictions that fall out of this insight, in order of increasing strength, are that

1. Asset � has explanatory power for expected excess returns.

2. The premium for 1 unit of � is the market premium, �M .

3. An asset provides positive expected excess returns only if it bears market risk.

Prediction 1 seems to hold. Roughly, it says that "� matters." That is, if you run a time-series

regression of an asset�s return on the time-series of market returns, you should obtain a statistically

signi�cant, non-zero coe¢ cient.

Roughly, Prediction 2 says the following. Suppose you estimate � for each stock by running a

time-series regression of excess returns on market returns. Then, in a cross-sectional regression,

you regress (time-series) average returns on �. If you plot the resulting line, the slope of your line

should be �M . Typically, Prediction 2 is rejected - the slope is smaller.

Prediction 3 says that �M is the only factor that explains expected excess returns. However,

we know that a number of other factors, such as the value factor, HML, and the size factor, SMB,

also tend to explain returns, so this prediction is rejected.

Fama and French (Journal of Economic Perspectives, 2004) has an in-depth discussion of these

predictions.

1.3.2 Relation to Black-Litterman

Black-Litterman uses this insight of CAPM as the starting point for forming portfolio weights.

Speci�cally, if you are a manager that is benchmarked against an underlying portfolio, the Black-

Litterman procedure suggests using implied returns from (5) and (6) as the mean for (normally
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distributed) prior beliefs. These implies returns by �rst estimating � and using as inputs �S and 


from the modeler. While the actual Black-Litterman procedure can be understood just by taking

these formulas as given, understanding why it works requires really understanding the equilibrium

intuition of � described above.

2 Black-Litterman

In the typical portfolio optimization problem, the �nancial modeler estimates two items. First,

the modeler estimates the vector of expected excess returns, �. Second, the modeler estimates

the matrix �. The modeler then uses these two as inputs in computing optimal risky portfolio

weights w�i where w
�
i � = 1, where � is the N � 1 vector of ones. (Note that wi are value-weights,

not quantity-weights.) That is, the �nancial modeler computes the w�i that maximizes the Sharpe

ratio, and then allocates a proportion (1� �) to the risk-free asset, and � to the optimal risky

portfolio.

In contrast, Black-Litterman replaces the estimation of � based on historical data with the

implied returns from CAPM, using (5) or (4). The thought experiment is as follows: suppose we

take the observed market portfolio as the starting point for an optimal portfolio. If we believe that

the world is close to equilibrium, then this should be a reasonable approximation. However, we

might think that we have some information or beliefs that the market portfolio weights have not

incorporated yet. The insight of Black-Litterman is that, in a world where returns are distributed

normally, Bayes�rule gives us a simple way to update the market portfolio with our own information.

This can be accomplished in �ve steps.

2.1 Compute �

Suppose we have T observations of returns on our N assets. Denote the observation of excess

returns in period s as qs, and let Q be the T �N stacked matrix of q0s. (Recall that qs is N � 1,

so Q is literally taken by stacking q01 on top of q
0
2, and so forth, all the way until q

0
T .)

There are two possibilities - N is small, or N is large. If N is small, a reasonable estimator of

� is the sample covariance matrix. To review, recall that, by de�nition, the covariance matrix �

is

� = E
�
(Q� E [Q]) (Q� E [Q])0

�
= E

�
QQ0

�
���0
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so the analagous sample estimator is

�̂ =
1

T

TX
s=1

qsq
0
s � �q�q0

where

�q =
1

T

TX
s=1

qs

This can be re-written as

�̂ =
1

T
Q0Q� �q�q0 (7)

If N is large, the number of parameters to be estimated (N (N + 1) =2) is large, and so the

number of observations T required so that (7) converges will be extraordinarily large. There is a

small science behind how to compute covariance matrices for large N - for more information, see

Chapter 18 of Litterman (2003).

2.2 Compute CAPM Implied Returns.

We wish to calculate

� = ��M

=

� S
 0S�

 0S� S

( 0S�)
2


 0S� S
 0S�

This step requires some input from the �nancial modeler. One procedure is to conjecture a �̂M

based on a benchmark portfolio and compute the �̂ of each asset with this benchmark portfolio

based on (6) with a conjectured vector  S . For example, if the benchmark is the S&P500 (a

value-weighted index of 500 stocks),  S;i = piqi, and  S� =
�P500

j=1 pjqj

�
, and �̂M is the historical

risk-premium of the S&P500 over a suitable risk-free rate. Alternatively, if the benchmark is

an equal-weight portfolio,  S = 1=K,  S� = 1, and �̂M is the historical risk-premium of this

equal-weight portfolio.

From these conjectures, the modeler can easily compute

�̂ =
�̂ S

 0S�̂ S
 0S�
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and

�̂ = �̂�̂M

for the modeler�s choice of �M .

Note that this procedure is equivalent, from an economics standpoint, to conjecturing aggregate

risk-aversion 
, and computing (4) directly using �̂ and a speci�ed  S , but often it is easier from

a practitioner�s perspective to conjecture a �̂M instead of 
.

2.3 Express Con�dence in CAPM.

The �rst two steps have given us an "initial estimate," or a set of prior beliefs, about the distribution

of returns. That is, from what we have computed above, our current beliefs about the distribution

of returns is The BL approach allows the modeler, at this step, to express his or her con�dence

in the CAPM model as a whole, through a parameter � . That is, the set of prior beliefs used by

Black-Litterman is

Q~N
�
�̂; � �̂

�
A typical value of � is the neutral value of 1. Higher values of � express lower con�dence in CAPM.

2.4 Express Views.

Now that we have a set of "prior beliefs," the fact that the underlying model implies these beliefs

are normally distributed gives us an easy way to incorporate any news or private information the

�nancial modeler may have about returns. To be speci�c, a set of views are two matrices, P

(N �N) and M (N � 1); such that

P� =M

and a diagonal N � N matrix 
 that express con�dence in these views. For example, suppose

N = 3. The matrices

P =

26664
1 0 0

0 1 �1

0 0 0

37775 ;M =

26664
7%

5%

0

37775 ;
 =
26664
225 0 0

0 625 0

0 0 0

37775
express the view that asset 1 will earn an excess return of 7% with con�dence 15%, and that asset

2 will outperform asset 3 by 5%, with con�dence 25%. Note that 
 is in units of (%2).
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It is important to remember that these views represent Gaussian beliefs. That is, the view that

asset 1 will earn an excess return of 7% with con�dence 15% essentially means that the modeler

wishes to incorporate the belief that �1 is distributed N
�
:07; :152

�
. The second belief corresponds

to the belief that �2 � �3 are distributed N
�
:05; :06252

�
.

2.5 Compute Posterior Beliefs and Portfolio Weights.

Once we have all these parameters, the rest is mechanical application of Bayes�rule and some extra

mathematical manipulation. Given our views, the posterior belief distribution of returns - that is,

the combination of the beliefs implied by CAPM and those of the modeler, combined using Bayes�

rule - is distributed normally. Denote these beliefs as QPOST , it follows that

QPOST ~N
�
�̂POST ; �̂POST

�
�̂POST =

��
� �̂
��1

+ P 0
�1P

��1 ��
� �̂
��1

�̂ + P 0
�1M

�
�̂POST =

��
� �̂
��1

+ P 0
�1P

�

From these beliefs, it is easy to compute back the implied portfolio weights. Recall that, if our

views are correct, then from equation (4), � = 
� S as an equilibrium relation. Then, if our BL

views are correct, it must be that

�̂POST = 
�̂POST BL

where  BL is the implied value of shares that the BL portfolio implies holding. Then the portfolio

weights wBL are given by

wBL �
 BL
 BL�

=
�̂�1POST �̂POST�
�̂�1POST �̂POST

�
�

The quantity of shares demanded is clearly

�BL =  BL:=P

where ":=" is element-by-element division.
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3 Final Thoughts

Why is Black-Litterman important? From a theoretical perspective, it is an elegant way to move

from observed returns to portfolio weights by assuming that observed returns are generated from

CAPM and then applying Bayes�rule to incorporate our private beliefs. The �nancial modeler then

has a way to center portfolio weights around a given benchmark portfolio and then use these views

to derive new portfolio weights. From a practical perspective, BL is very important because the

Markowitz optimization process often gives you infeasible portfolio weights. For example, weights

of �300% are not uncommon. Note that the �nal step does not require a "re-optimization" process

- the equilibrium relation (4) gives us everything we need!
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