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We investigate the trade-off between incentive provision and inefficient rollover freezes for
a firm financed with short-term debt. First, debt maturity that is too short-term is inefficient,
even with incentive provision. The optimal maturity is an interior solution that avoids
excessive rollover risk while providing sufficient incentives for the manager to avoid risk-
shifting when the firm is in good health. Second, allowing the manager to risk-shift during
a freeze actually increases creditor confidence. Debt policy should not prevent the manager
from holding what may appear to be otherwise low-mean strategies that have option value
during a freeze. Third, a limited but not perfectly reliable form of emergency financing
during a freeze—a “bailout”—may improve the terms of the trade-off and increase total
ex ante value by instilling confidence in the creditor markets. Our conclusions highlight
the endogenous interaction between risk from the asset and liability sides of the balance
sheet. (JEL G01, G20, G21, G28, G32)

Is the use of short-term debt optimal? Recent research has focused on the role
of a freeze in short-term debt markets as a leading amplification mechanism
that led to the worst financial crisis since the Great Depression.1 The basic
premise is that the nonbank financial sector, which experienced rapid growth
in the early and mid-2000s, and which relied heavily on staggered short-term
debt to finance risky long-term and illiquid assets, experienced arollover freeze
during the crisis. Short-term creditors refused to roll over their debt for fear of
future deterioration in the real estate market, leading to financial distress for
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those firms far exceeding the level of losses (Brunnermeier 2009). Under this
view, short-term debt creates a liability-side risk, or funding risk, for firms.

An alternative literature, dating back toCalomiris and Kahn(1991), empha-
sizes the role of short-term debt as a disciplining device for moral hazard, for
example to prevent risk-shifting by managers (Jensen and Meckling 1976).
Kashyap, Rajan, and Stein(2008) note that “short-term debt may reflect a
privately optimal response to governance problems.” Under this premise, short-
term debt for the nonbank sector increases value much in the way depositors
are value-increasing for the banking sector: the fragility of the institution itself
provides incentives for depositors to monitor management and thus mitigates
agency issues (Diamond and Rajan 2000, 2001). Nevertheless, the literature
has yet to fully resolve the trade-off between incentives and rollover risk, the
latter of which was, if not the match that lit the fire, arguably the accelerant
that set the crisis ablaze.

In this article, we attempt to reconcile these views. Our research question
is to ask what the optimal structure of debt should be in the presence of both
rollover freezes (liability-side risk) and risk-shifting problems (asset-side risk).
Our contribution is threefold. First, we show that in the presence of both a
risk-shifting problem and coordination problem among creditors, debt that is
very short-term is inefficient from the perspective of total firm value, as it leads
to low creditor confidence. Second, we show that it can be inefficient for debt to
contain covenants that restrict managerial choices about which assets to hold.
At the optimal maturity, allowing the manager to risk-shift during a rollover
freeze actually alleviates the creditor coordination problem and increases firm
value ex ante. Third, our article shows that making a moderate amount of
emergency financing available in the event of a rollover freeze—what we term
a “bailout”—is value-increasing, even when including losses for the credit
provider.

We build a dynamic model that focuses on the interaction between risk-
shifting and an intertemporal coordination problem among creditors. Our
results depend critically on the role of the volatility of the time-varying
fundamental. Intuitively, there are two competing frictions in our model that
both interact with volatility. The first is the agency wedge between debt
and equity, which creates asset-side risk arising from the possibility that the
manager increases volatility when fundamentals are low. The second wedge
arises from the feature that debt does not come due together, which introduces
a conflict of interest between today’s maturing creditors and future maturing
creditors. Since rolling over debt exposes a creditor to the possibility that the
firm may be liquidated if creditors in the future refuse to roll over their debt,
today’s maturing creditors may refuse to roll over debt to avoid exposure to
liquidation costs. In contrast, creditors who are currently locked in would like
today’s maturing creditors to roll over debt to avoid a freeze. This tension
between types of creditors creates risk for the firm from the liability side of
its balance sheet. Interestingly, we show that risk-shifting interacts with these
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two competing frictions in different ways, in that increasing volatility during
a rollover freeze may alleviate the wedge between different types of creditors
and increase value.

The model contains the following elements. First, a financial firm acts as
a simple investment vehicle in long-term, illiquid assets. The manager, who
holds the equity of the firm, can shape the risk profile of the asset side of
the balance sheet by switching between one of two strategies, A or B, at any
point in time, where strategy A is a high-mean, low-volatility “good” strategy
and strategy B is a low-mean, high-volatility “bad” strategy. In the absence of
other considerations, it is clearly inefficient for the manager to adopt the bad
strategy at any point. However, in the presence of debt financing, it becomes
optimal for the manager to risk-shift, or “gamble for resurrection,” when firm
fundamentals are low, reducing firm value ex ante. The source of this asset-side
risk is the usual inefficient wedge between the interests of debt and equity. We
focus on risk-shifting since it is an important source of agency issues among
financial firms, as noted inAcharya and Viswanathan(2011).

The firm finances its investments using staggered short-term debt and must
continually roll over its debt. The staggered nature of debt creates “liability-
side risk” in the form of debt runs (He and Xiong 2011a).2 Intuitively, stag-
gered short-term debt creates an intertemporal coordination problem, or low
“creditor confidence,” where creditors refuse to roll over their debt when firm
fundamentals are sufficiently low. These rollover freezes, or “dynamic debt
runs,” are unlike static bank runs in that the time-varying firm fundamentals
may improve before the firm is liquidated during a freeze. Shortening the debt
maturity makes it less likely for fundamentals to improve before manyfuture
maturing creditors have a chance to make their rollover decision, increasing
the incentive for today’s maturing creditors to refuse to roll over now. Failing
to survive a freeze results in distressed liquidation, so rollover freezes reduce
firm value ex ante.

These elements make the trade-off between shorter and longer maturities
nontrivial. Although short-term debt can lead to freezes, it mitigates the risk-
shifting problem by imposing a punishment in the form of liquidation. Longer
maturities (such as those that are matched with asset maturity) may lead
the manager to risk-shift even when the firm is not experiencing a freeze,
a phenomenon we call “preemptive risk-shifting.” Firm value is optimized
at the maturity where the manager never preemptively risk-shifts. Indeed,
the equilibrium probability of a run is minimized at the optimal maturity,
even though creditors’ run-thresholds are lower for longer maturities. This is
because the equilibrium preemptive risk-shifting associated with these longer
maturities results in higher ex ante run probabilities. Additionally, risk-shifting
when the firm is not experiencing a freeze is an inefficient transfer from debt

2 We use the terms “debt run” and “rollover freeze” interchangeably.
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to equity. Our first result is thus that debt maturity should be just short enough
to eliminate preemptive risk-shifting.

On the other hand, risk-shifting during a freeze can actually increase value
and improve creditor confidence. Intuitively, the intertemporal nature of a
rollover freeze implies that the interests of future, nonmaturing creditors and
current, maturing creditors diverge during a freeze. The manager’s natural
incentive to risk-shift during a freeze may actually improve value by mitigating
this wedge between maturing and nonmaturing creditors. Nonmaturing cred-
itors are effectively junior to maturing creditors and thus have more convex
interests in that they want the firm to recover quickly (or at least survive long
enough until their debt matures) in order to avoid being saddled with inefficient
liquidation. Consequently, they prefer the volatility and higher option value of
the bad strategy during a freeze, as it increases the chance that their debt will
come due before the firm is liquidated inefficiently.

In equilibrium, when all agents anticipate that managers will hold the
high-volatility asset during the freeze, a maturing creditor will be less worried
about future creditors’ motives to withdraw funding, so that other creditors
will be less worried about other creditors withdrawing funding, and so on.
This results in a weaker ex ante incentive to run. Thus, giving the manager
the capability to risk-shift during a freeze improves value, relative to the case
where the manager is restricted to only adopting the good strategy forever.
Debt policy should not be so stringent as to inadvertently prevent managers
from holding assets or taking actions during a freeze that would be deemed
too risky or otherwise poor ideas during normal times. Our results highlight
that there are two types of risk-shifting that interact with different frictions.
Preemptive risk-shifting decreases value through the wedge between debt and
equity. Risk shifting during a freeze alleviates the wedge between different
types of creditors, increasing value.

The third part of our analysis considers how moral hazard and freezes vary
with “bailout” policies where a third party (such as the government) provides
emergency financing to the firm during a freeze by providing creditors just
enough money to roll over their debt on the margin. Our thought experiment
is to ask whether total value (including expected government losses) is
worsened by such a policy in a stylized setting where we think of our firm as
representing the broad financial sector. The emergency financing is provided
only probabilistically in the sense that it may not be limitless, but only provided
for a limited (random) amount of time; if the funding disappears, the sector
experiences a severe liquidation cost, e.g., large costs associated with systemic
failure. We parameterize the “reliability” of a bailout as the expected amount
of time a firm can expect to receive emergency financing during a freeze, and
compute the optimal reliability including the endogenous effect of emergency
financing on rollover freezes, moral hazard, and expected government losses.

We find that a nontrivial bailout reliability improves total ex ante value.
The optimal reliability of emergency financing is positive yet “mild” in the
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sense that, at the optimal reliability, the manager never adopts the bad strategy
outside of a freeze. Providing emergency financing for a positive expected
amount of time helps reduce the incidence of freezes ex ante by boosting
creditor confidence. The optimal reliability is positive and is associated with
low government losses, low equilibrium run probabilities, and higher total
value for a range of parameters, as it eliminates preemptive risk-shifting but
does not induce inefficient runs.

Our model is related to bank run models going back toDiamond and Dybvig
(1983) and the bank-run/incentive models ofDiamond and Rajan(2000, 2001),
as well as the extensive global games literature on runs (e.g.,Morris and Shin
2004). Goldstein and Pauzner(2005) characterize the optimal demand-deposit
contract that maximizes risk-sharing among depositors who face preference
shocks; our focus is on incentives, rather than optimal risk-sharing. In contem-
poraneous work,Eisenbach(2011) shows that in a model without frictions and
two outcome states, short-term debt can be used to implement the first-best
allocation of control rights of the firm; in a more complex state space, ineffi-
ciencies may arise if runs (or lack thereof) give control rights to an inefficient
party.Rochet and Vives(2004) study bailouts in a global games framework.
This literature provides a tractable and useful framework to analyze how
coordination problems among bank depositors and creditors lead to runs.
Relative to this literature, our analysis is distinct in that it is motivated by the
question of how fluctuations in firm fundamentals and volatility may drive both
fragility and incentives through the staggered debt structure of a firm. We view
this analysis as providing a complementary yet independent understanding of
the sources of fragility and incentives in addition to the information-based
intratemporal sources of fragility analyzed in the global games literature. Our
article is also related to the theoretical literature on debt maturity.Diamond
(1993) (and the closely relatedDiamond 1991article) looks at how to
optimally structure the seniority and maturity of debt contracts in response to
an adverse selection problem rather than moral hazard. Technical foundations
that are similar to our model are found inFrankel and Pauzner(2000).

The article proceeds as follows. Section1 introduces the model, Section
2 describes our equilibrium, and Section3 describes our results pertaining
to optimal maturity and optimal risk-shifting. Section4 examines the effect
of emergency financing, and Section5 discusses further implications of our
analysis. Section6 concludes.

1. The Model

Consider a financial firm that is a simple investment vehicle for long-term,
illiquid assets. The firm is run by a manager who can switch between one of
two investment strategies at any point in time, one of which is a high-mean,
low-volatility strategy while the other strategy is a low-mean, high-volatility
strategy. The firm finances itself using staggered short-term debt, such as
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asset-backed commercial paper, and the manager holds the equity of the
firm. The staggered nature of short-term debt creates liability-side risk in the
form of the possibility of rollover freezes, while the possibility of choosing
different investment strategies creates asset-side risk in the form of inefficient
risk-shifting.

The key quantities of interest are the maturity of debt and how it affects
firm value, the shadow value of constraints (such as covenants) that force
the manager to avoid risky strategies, and the value of emergency financing
provided during a possible creditor run. The model is dynamic and set in
continuous time witht ∈ [0, ∞), as our results emphasize the interaction that
volatility has with incentives and runs.

1.1 The firm, manager, and asset-side risk
The manager of the firm can employ one of two possible strategies, A or B.
Employing either strategy yields a fixed cash-flowr per unit of time, which
is routed to creditors.3 The firm also yields a final random payoff ofyτφ at a
random timeτφ in the future. We can think ofτφ as representing the maturity
of the type of assets underlying the firm’s strategies; when the final payoff
realizes, the firm is dissolved. We model the asset maturity as random for
tractability purposes; we assume that the realization timeτφ is exponentially
distributed with intensityφ, so one interpretation is that the firm invests in
assets that are expected to mature 1/φ years in the future.

The key distinction between the strategies is that the final payoffy evolves
with a high drift and low volatility while the manager employs strategy A,
whereas it evolves with low drift and high volatility while the manager employs
strategy B. Mathematically,y evolves according to

dyt

yt
= μi dt + σi d Zt , (1)

whered Z is a standard Brownian motion,μi is the growth rate of the final
payoff,σi is the instantaneous volatility, andi indexes whether the manager is
following strategy A or B, and whereμA > μB butσA < σB.

The risk-neutral manager holds all the equity of the firm, and cares only
about final wealth. The manager can switch between strategies costlessly at
any point in time based on the current value ofy, which is observable to
both creditors and the manager. We denote the region of values ofy where
the manager adopts strategy B with the setR̄. For example, the manager may
choose to adopt strategy B whenevery is less than 1, in which casēR = (0, 1).
The manager takes the impact of his risk-shifting on creditor run-thresholds
into account.

The possibility that the manager adopts strategy B at any point creates
“asset-side risk” for the firm. Strategy A dominates strategy B—it has higher

3 Thus, the model is cashless. This assumption is discussed in more detail in Section5.1.
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return for less risk. Hence we call strategy A the “good” strategy and strategy
B the “bad” or “risk-shifting” strategy. While only having two possible
investment strategies is a stark setup, we view them as proxies for more com-
plex investment strategies, where the bad strategy substantially increases the
volatility of the firm’s fundamentals at the expense of long-run performance.

1.2 Debt financing and liability-side risk
We choose the dynamic debt run model ofHe and Xiong(2011a) as our
building block for liability-side risk. This choice is motivated by two consider-
ations: first, the dynamic nature allows for treatment of volatility, and second,
the model provides a robust unique equilibrium, which allows us to model
incentives with runs in an integrated framework.

The firm finances itself using debt with total face value normalized to one.
The debt is held by a continuum of risk-neutral creditors of unit measure, and
each creditor holds debt of face value 1. We assume the creditors have discount
rateρ < r so that debt is financially attractive, as creditors receive the full
cash flowsr that the firm generates. The important feature about the firm’s
debt financing is that the firm staggers the maturity of its debt: rather than
having all creditors’ debt contracts mature at the same time, only a fraction
of debt comes due at each point in time. As noted inHe and Xiong(2011a),
many financial firms spread out the maturity of their debt expirations, often for
liquidity reasons.

More formally, in a reinterpretation of the sinking fund assumption in
Leland (1998), a creditor’s contract comes due upon the arrival of an
independent Poisson shock with intensityδ at each point in time. We refer
to 1/δ as the maturity of the firm’s debt, although there is a distribution of
debt maturityT described byδe−δT with expected maturity 1/δ, plotted in
Figure1. Whenδ = 0, asset maturities and debt maturities are matched: all
creditors are locked in until the firm’s final asset payoff is realized atτφ .
On the other hand, whenδ > 0, not only is there a maturity mismatch, but a
fraction of δ of debt comes due at each point in time, leading to a staggered
debt structure, with high values ofδ corresponding to very short-term debt.
Section3 endogenizes the choice ofδ.

Figure 1
Distribution of debt maturities for various δ
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Currently maturing creditors may choose to withdraw the face value of their
debt, equal to one, or roll over their debt at no additional cost and return to the
nonmaturing creditor pool. In contrast, a nonmaturing creditor must wait for
their debt to come due before they can extract the face value of their debt. In
this sense, the nonmaturing creditors are junior to currently maturing creditors,
even though all claims are of ex ante equal seniority.

If all currently maturing creditors refuse to roll over their debt, a situation
we term arollover freeze, the firm must find continued financing to survive,
or undergoes distressed liquidation if it cannot do so. Specifically, we assume
that the company draws on emergency financing through pre-established credit
lines or government money to fill the gap on the balance sheet during a rollover
freeze.4 However, this emergency financing is not perfect: when all maturing
creditorsδ in a dt period decide to pull out, there is a probabilityθδdt that
the company cannot find financing. In this case, the company is liquidated in
distress and its assets are sold at a fire sale discount. The parameterθ measures
the reliability of the firm’s credit lines or possible government bailouts—the
higher the value ofθ , the more likely the firm will be liquidated in distress.
Note that, for a givenθ , when maturities are short (δ is high), the run pressure
on credit line financing is higher since more creditors are withdrawing money
in a given unit of timedt, implying that the firm is more likely to fail. Section
4 endogenizes the choice ofθ .

If the firm is liquidated in distress (i.e., during a rollover freeze), the firm’s
assets are sold on the outside market, where it fetches its expected discounted
cash flow under strategy A. We assume that the liquidation value is always
the risk-neutral value under strategy A (even if the firm is, at the moment,
employing strategy B) for simplicity.5 One might think of the outside investor
as a deep-pocketed investor who is not subject to agency concerns, but where
there are losses due to the illiquidity of the asset, inefficiencies in the transfer
of ownership, or other bankruptcy costs. Formally, we assume that there is a
proportional cost of sale for distressed liquidations(1 − α), with α ∈ (0, 1).
The project’s outside value is

L (y) ≡ αEA
[∫ τφ

t
e−ρ(s−t)rds + e−ρ(τφ−t)yτφ

]

=
αr

ρ + φ
+

αφ

φ + ρ − μA
y

= L + ly.

Because of equal seniority, the proceeds are split equally among all non-
maturing creditors up to the face value of debt; excess proceeds are distributed

4 We assume the maturity structureδ is unaffected by this; i.e.,δ is stationary.

5 The results are nearly identical if we assume that liquidation value is always the risk-neutral value under B, or
some linear combination of the two values.
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Figure 2
Example paths ofy with various possible outcomes
Either the asset pays its terminal value (τφ realizes) or the firm is liquidated in a run (τθ realizes).

to equity. Crucially, a firm can survive a freeze if fundamentals recover in time,
as demonstrated in Figure2.

1.3 Value functions
All in all, there are two possible outcomes for the firm. It is either prematurely
liquidated in distress, or the final payoff is realized. More formally, define the
project’shorizon timeτ = min

{
τφ, τθ

}
as the minimum time of two possible

events, either the final payoff realizing (τφ) or the firm liquidating (τθ ) as the
result of a freeze.

The value of the outcomes for the various agents in the model are as follows.
First, consider today’s maturing creditors. They are faced with a choice of
either withdrawing their face value of 1, or rolling over their debt and becoming
a nonmaturing creditor. If we letD (y) denote the value of nonmaturing
debt as a function of the current fundamental, this means that maturing
creditors can choose either to receive 1 or to roll over and receiveD (y) by
becoming a nonmaturing creditor. The value of this rollover option is evidently
max{1, D (y)}.

Second, there are today’s nonmaturing debtors.6 The current value of their
debt can be described as the discounted expected value of three possible
future outcomes. First, their contract could come due in the future, in which
case they become a maturing creditor and will face a rollover choice, worth
max

{
1, D

(
yτδ

)}
at that future moment. Second, the final payoff could realize

at τφ , in which case they will receive the standard debt payoff of min
{
yτφ , 1

}
.

Third, the firm could be liquidated atτθ during a freeze, with each debtor
receiving a payoff equal to min

{
L + lyτθ , 1

}
. Between now and any one of

those three future events, the nonmaturing creditor will collect the cash flowr
per unit of time.

6 Due to the assumption of random maturity, all nonmaturing debtors are the same, as they face the same stationary
problem.
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Mathematically, we can write the value of nonmaturing debt as

D (y) = Et





∫ min{τ,τδ }−t
t re−ρ(s−t)ds+ 111{min{τ,τδ }=τδ }e

−ρ(τδ−t) max
{
1, D

(
yτδ

)}

+111{min{τ,τδ }=τφ}e−ρ(τ−t) min
{
yτφ , 1

}
+ 111{min{τ,τδ }=τθ }e−ρ(τ−t) min

{
L + lyτθ , 1

}



 ,

(2)

where the first term reflects the interest payment, the second term describes
the rollover decision at maturity,7 the third term is the payoff from the project
realizing, and the last term is the payoff from liquidation.

Third, there is the manager, who holds the firm’s equity. The current value
of equity, which we denote byE (y), can be described as the discounted
expected value of two possible future outcomes. First, the asset’s terminal
value could realize atτφ , in which case they will receive the standard equity
payoff of max{yτ − 1, 0} and then the firm shuts down. Second, the firm
could be liquidated atτθ during a freeze, in which case equity receives
max{L + lyτ − 1, 0} at that future moment. Mathematically, we can thus write
today’s value of equity as

E (y) = Et

[
111{τ=τφ}e−ρ(τ−t) max

{
yτφ − 1, 0

}
+ 111{τ=τθ }e

−ρ(τ−t) max
{
L + lyτθ − 1, 0

}]
, (3)

where the first term is the payoff from the project realizing and the second term
is the payoff from liquidation.

We denote the critical threshold over which creditors roll over asy∗ and the
risk-shifting region asR̄.8 For now, we conjecture that̄R is the union of two
open intervals, i.e.,R̄ = (0, ȳ1) ∪ (ȳ2, ȳ3). We discuss why this conjecture
for R̄ is intuitive when we solve the equilibrium. Under this conjecture, we
can solve for the functionsD (y) and E (y) in closed form up to a system of
nonlinear equations for any given

(
y∗, R̄

)
, which we show in the Appendix.

1.4 Parameter restrictions & numerical benchmarks
Before turning our attention to equilibrium, we need to impose a few additional
parameter restrictions for the model to make sense and the value functions to
be well defined.

First, we assume thatL + l ≤ 1, so that the project aty = 1 is worth
less if liquidated than if it realized immediately. This is important to rule out
the manager unilaterally liquidating the project to cash in on the promised

7 As default/liquidation and an individual rollover decision coinciding at a timet is an event of bounded variation
of orderdtdt, we can ignore this event. Thus, the creditor’s only decision at timeτδ (the maturity time of their
debt) is whether to roll over or to collect the face value of1.

8 It is worth noting thatD (y) andE (y)—the value of nonmaturing debt and the value of equity—are expectations
that take into account all possible paths ofy and thus account for the possibility that the manager may change
the drift and volatility of the fundamental at any point and also that creditors may run. If the critical threshold
over which creditors roll over isy∗ and the risk-shifting region is̄R, then these functions should be denoted
as D

(
y|y∗, R̄

)
and E

(
y|y∗, R̄

)
instead ofD (y) and E (y). For notational convenience, we drop the latent

variables.

1079



The Review of Financial Studies / v 25 n 4 2012

Table 1
Parameter values

Parameter Value Interpretation

r 0.065 Cash flow from project per unit of timedt
ρ 0.033 Discount rate
φ 0.075 Intensity at which terminal value of asset realizes
θ 5 Reliability of emergency financing
δ 10 Expected maturity of debt (1/δ = 0.1 years)
μA 0.033 Drift of strategy A
μB 0 Drift of strategy B
σA 0.1 Volatility of strategy A
σB 0.3 Volatility of strategy B
α 0.55 Liquidation discount factor (Liquidation cost is1 − α = 45%)

interest flow to the creditors. Because of this and the assumption that equity
holders have no cash, there is no endogenous default triggered directly by the
manager, unlike inLeland(1994, 1998), andLeland and Toft(1996).9 Let yL

be the point at which, if liquidated, the project yields just enough to pay off all
creditors. From our previous assumptions, we have

yL ≡
1 − L

l
≥ 1,

so that[y − 1]+ ≥ [L (y) − 1]+.
Second, as we will see in Section2.1, we requireρ + φ > r to ensure that

there is an incentive to stop rolling over for the debtholders. Combined with
the previous restrictionr > ρ, we haveρ < r < ρ + φ.

Third, we requireμA < ρ +φ in order for the firm to have finite value. Note
that neither the maturity parameterδ, the volatility parametersσA andσB, nor
the liquidation intensityθ enter these parameter restrictions so far.

Finally, we want the risk-shifting problem to be nontrivial for the manager.
To this end, we make parameter assumptions such that he will have a natural
incentive to risk-shift for lowy. This entails assuming thatμA, σA, μB andσB

are such that the positive root of
σ2

i
2 η2 +

(
μi −

σ2
i
2

)
η − (φ + ρ + θδ) is larger

for strategy A than for strategy B.
For our numerical solutions, Table1 lists our annualized benchmark

parameter values. Our choices are motivated by values consistent with
nonbank financial firms during the recent boom and crisis. The asset’s cash
flow rate is 6.5% per year, consistent with average conventional mortgage
rates from 2000 to 2008 available from Federal Reserve H.15 statistical
releases. Our discount rate is chosen to be consistent with one-year Treasury
rates, which average 3.3% over this same period, according to the same data

9 As the model nests a liquidation option, we need to consider the following question: does the manager have an
incentive to unilaterally liquidate the firm? His payout when the project realizes is(y − 1)+, whereas his payout
when the firm is liquidated is(L + ly − 1)+. By liquidating today, the manager is able to raise cash that is related
to interest paymentsr (summarized by coefficientL = αr

ρ+φ ), which would otherwise go to the debtholders.

Thus, for consistency, we need to check thatE (y) ≥ [L (y) − 1]+. This holds for all cases treated in this article.
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from the Federal Reserve Board. We fixφ to be consistent with the duration
of a 30-year mortgage that has a yield and coupon of 6.5%, or roughly
φ = 0.075. We begin with an expected debt maturity of 1/δ = 0.1 years,
or around 37 days, consistent with the average maturity of ABCP in March
2007 (Covitz, Liang, and Suarez 2009). We chooseθ = 5 to give usθδ = 50,
which translates into an expected survival time of1φ+δθ = 0.02 years, or

approximately one week, during a freeze.10 This is a conservative value given
that Bear Stearns survived for three days when creditors refused to roll over
its debt before its forced sale to J. P. Morgan.

We choose the drift and volatility of the two strategies to give a nontrivial
risk-shifting problem around reasonable parameters. We set the drift of strategy
A to be the same asρ given our risk-neutral setup, and we fix the drift of
strategy B to be 0%.Veronesi and Zingales(2010) report that the average
asset volatility for a set of financial firms, including many large investment
banks, is 10%. We thus chooseσA = 0.1. We set the annualized instantaneous
volatility of strategy B to be three times that of strategy A, orσB = 0.3. Finally,
according toMoody’s (2009), the recovery rate in default of financial firms’
bonds in 2008 averaged 35%. We choose a relatively conservative recovery
rate ofα = 55%. These parameters satisfy all of our restrictions above.

2. Rollover Risk and Risk-shifting

We now turn our attention to equilibrium, where creditors symmetrically
choose a rollover thresholdy∗ to maximize their debt value, and the manager
chooses a risk-shifting region̄R = (0, ȳ1) ∪ (ȳ2, ȳ3) to maximize his equity
value. We look for a dynamically consistent equilibrium

{
y∗, R̄

}
, where the

state variable is the observable fundamentaly. In equilibrium, each individual
creditor must be just indifferent between rolling over his debt and receiving
face value of 1 at aty = y∗. This equilibrium condition can be written as
D
(
y∗|y∗, R̄

)
= 1.

Optimality can be represented as a so-called “super-contact” condition
(Dumas 1991; Dixit 1993) which we derive in the Appendix, where, at each
point ȳi , the second derivative of the manager’s value function must be equal
whether or not he employs strategy A or strategy B.

Combining these two conditions, an equilibrium in our model is defined as:

Definition 1. A symmetric Markov-Perfect Nash equilibrium
(
y∗, R̄

)
in cut-

off strategies, where maturing creditors maximizemax(1, D (y)) and the
manager maximizes max

R̄=(0,ȳ1)∪(ȳ2,ȳ3)
E (y) must simultaneously satisfy

10 During a freeze, either the firm may be liquidated or the asset’s payoff may realize. However, conditional on one
of these two events happening, the probability that the firm was liquidated isθδ

φ+θδ = 0.9985and the probability
that the asset’s final payoff realized is only 0.0015. Thus, the liquidation event is by far the dominating event
during a rollover freeze.
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1. (Creditors’ Indifference Condition)D
(
y∗|y∗, R̄

)
= 1 with D

(
y|y∗, R̄

)

strictly increasing iny.

2. (Manager’s Optimality Condition) The cut-off pointȳi in E
(
y|y∗, R̄

)

either satisfies the super-contact condition limy↑ȳi Eyy
(
y|y∗, R̄

)
=

limy↓ȳi Eyy
(
y|y∗, R̄

)
, whereEyy is the second derivative of the man-

ager’s value function, or is a corner solution in the sense thatȳi ∈
{1, yL , y∗} with no profitable deviation̄y′

i available.

The rest of this section is devoted to understanding how various moving
parts affect equilibrium outcomes.

2.1 Benchmark: equilibrium with rollover risk only
Why do creditors wish to stop rolling over their debt? In short, the presence
of a liquidation cost creates a coordination problem among creditors—if a
maturing creditor rolls over his debt today, he is exposed to the possibility
that tomorrow’s maturing creditors may withdraw funding, causing the firm
to be liquidated. Thus, tomorrow’s maturing creditors exert an externality on
today’s maturing creditors. Any creditor whose debt is maturing may wish to
walk away with their face value now instead of facing this liquidation risk.
The asset’s funding structure thus endogenously may lead to debt runs and
inefficient liquidation. This is a more distinct source of fragility than that
arising out of simultaneous move games where a mass of debt comes due at
any point in time, as discussed in the introduction.

In more detail, consider a maturing creditor’s problem. If he rolls over
his debt, he is locked in for an expected time of 1/δ, during which time
he is a nonmaturing creditor. As a nonmaturing creditor, he would like a
rollover freeze aty if and only if D (y) < min {L + ly, 1}; that is, if his
debt is worth less than the proceeds from distressed liquidation. In contrast,
maturing creditors will stop rolling over for anyy such thatD (y) < 1. Thus,
there is clearly a wedge between the incentives of maturing and nonmaturing
debtholders. Choosing to roll over debt today and becoming a nonmaturing
creditor exposes the creditor to movements iny, as low values ofy may
precipitate a run by tomorrow’s maturing creditors. Of course, the creditor
will be exposed to changes in the manager’s investment decision as well, since
they affect the dynamics ofy.

As a benchmark model, consider the case where the manager can only ever
adopt strategy A. For example, there may be debt covenants that restrict the
manager’s choice. Denote the equilibrium rollover threshold in this constrained
model byy∗

A. He and Xiong(2011a) establish that there is a unique equilibrium
in cutoff strategies where creditors refuse to roll over fory < y∗

A. Figure3plots
y∗

A for different values of 1/δ. The top left panel shows that the equilibrium
rollover threshold increases as maturity decreases (i.e., 1/δ decreases).

In equilibrium, a shorter maturity feeds back into a higher rollover threshold
y∗

A for everyone, a phenomenon we term aloss of creditor confidence. When
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Figure 3
Rollover thresholds and firm value under benchmark equilibrium with no risk-shifting as a function of
expected debt maturity 1/δ
Longer debt maturities correspond to higher values of 1/δ, while shorter maturities correspond to lower values
of 1/δ. The upper left-hand panel plots the rollover thresholdy∗

A on the vertical axis. The upper right-hand panel
and lower right-hand panel plot debt and equity value, respectively, aty0 = 1.2. The lower left-hand panel plots
the value of debt plus equity.

maturities are short, debt comes due quickly and many creditors act in quick
succession.11 Thus, low firm fundamentals are unlikely to improve before
many creditors have had a chance to act, which means that today’s maturing
creditors have an even stronger incentive to run since they expect future
creditors to run, which we formally show in the Appendix.12 This results in
a lower ex ante value of debt, equity, and total firm value for short maturities,
as plotted in the upper right panel, lower right panel, and lower left panel in
Figure3, respectively. In each of these panels, value is increasing in maturity
1/δ. In this benchmark model, shorter maturities are strictly inefficient.

2.2 Introducing risk-shifting
We now introduce the manager, who holds the equity of the firm. In the
presence of debt, the equity of the firm is a call option on the fundamental

11 More formally, the expected number of creditors that get to act between now and the next maturity time is
independent ofδ, as it is a product of the expected time1

δ and the flow of maturing creditors per unit of timeδ.

12 As noted inHe and Xiong(2011a), y∗
A’s monotonicity inδ disappears for situations with low drift and extremely

high volatility. In this situation, long-term debt may be bad for the firm since extremely high volatility makes it
likely that firm values will become extremely low while creditors are locked in. However, for more reasonable
volatilities, the dominating effect is that short maturities create more runs. We provide an analytical proof of this
in Lemma3 of the Appendix.
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y, which results in a risk-shifting problem (Jensen and Meckling 1976). For
example, wheny < 1, the manager is “out-of-the-money” on this option.
Since risk-shifting can increase the equity option value by trading off fatter
tails against a lower mean, managers have an incentive to employ strategy
B to “gamble for resurrection.” If we impose the assumption that creditors
never run (purely as an exercise, since this is clearly not an equilibrium), the
manager would risk-shift fory < 1.23 in our benchmark case, well before
his option is “out-of-the-money” and even beforeyL is reached, in order to
maximize his equity value.

Clearly, debtors would like to prevent risk-shifting, as strategy B is strictly
dominated and it dilutes their claim. Although debtors cannot individually
discipline the manager as they are each very small, the coordination problem
among creditors can discipline the manager through the possibility of rollover
freezes and the attendant likelihood of liquidation. Since risk-shifting increases
the chance that asset fundamentals deteriorate, the possibility of a freeze
and inefficient liquidation acts as a countervailing weight to the manager’s
incentive to gamble.

Note that, given a rollover thresholdy∗, it is entirely possible for a manager
to want to play a nonmonotone strategy in the following sense. For high values
of y, the manager’s equity is safely in the money, and he will want to adopt
the good strategy. For lower values ofy, but not low enough for creditors to
run, he may choose to risk-shift in order to increase the option value of his
equity. However, for values ofy very close to but abovey∗ (when a freeze is
imminent), the volatility of the bad strategy is likely to move the fundamental
into the freeze region, which is a very bad state of the world for the manager.
Because of this, he may actually adopt the good strategy for some “buffer”
region ofy slightly abovey∗. Finally, if fundamentals are low enough so that
creditors run (y < y∗), the threat of a run has already been exercised, so
the manager will gamble and risk-shift for sure. We therefore investigate risk-
shifting strategies of the form̄R = (0, ȳ1) ∪ (ȳ2, ȳ3), but we allowȳ1, ȳ2, and
ȳ3 to coincide. We call risk-shifting outside of the freeze regionpreemptive
risk-shifting, as it is risk-shifting that “preempts” (i.e., occurs before) the
freeze. It turns out that risk-shifting during a run has special implications for
firm value because the volatility of the time-varying fundamental interacts with
the incentive for creditors to run, which we analyze subsequently. Here, we first
prove that managers always risk-shift during a run in the following Proposition.
All proofs are in the Appendix.

Proposition 1. For any rollover thresholdy∗ < 1, it is optimal for the
manager to risk-shift on

[
0, y∗

]
.

3. The Optimal Structure of Debt

We now proceed to solve the full equilibrium with both rollover risk and
risk-shifting. Let

(
y∗

AB, R̄AB
)

denote the equilibrium rollover threshold and
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Figure 4
Rollover thresholds and firm value under full equilibrium as a function of expected debt maturity 1/δ
Longer debt maturities correspond to higher values of 1/δ, while shorter maturities correspond to lower values
of 1/δ. The upper left-hand panel has values ofy on the vertical axis and plots the rollover thresholdy∗

AB as

the thick black line along with the risk-shifting region̄RAB as the shaded region. Preemptive risk-shifting is
shaded in dark gray, while risk-shifting during a run is shaded in light gray. The upper right-hand panel and
lower right-hand panel plot debt and equity value, respectively, aty0 = 1.2. The lower left-hand panel plots the
value of debt plus equity. In all panels, the vertical line marks the optimal maturity 1/δ.

risk-shifting set. Because we need to consider the interaction between the
freeze and risk-shifting regions, we have to simultaneously solve fory∗

AB
andR̄AB = (0, ȳ1AB) ∪ (ȳ2AB, ȳ3AB). As we have closed-form solutions for
debt and equity for any given

(
y∗, R̄

)
given in the Appendix, the optimality

conditions reduce to numerically solving a system of nonlinear equations
in the variables

{
ȳ1AB, ȳ2AB, ȳ3AB, y∗

AB

}
and checking sufficiency.13 As a

preliminary result, we show in the Appendix in Lemma 4 that, irrespective
ofR, always and never rolling over cannot be equilibria.

3.1 Optimal maturity
Figure4 plots the equilibrium thresholds as a function of the expected debt
maturity 1/δ in the top left panel. The rollover thresholdy∗

AB is presented
as the thick black line, whereas the risk-shifting setR̄AB is identified by the
shaded gray areas. The dark shading identifies preemptive risk-shifting, while

13 We will focus on equilibria where the manager always gambles during a freeze, i.e., withȳ1AB = y∗, since
it is always optimal for a manager to gamble once a freeze has ensued. The other two risk-shifting thresholds
ȳ2AB and ȳ3AB are then found via a super-contact condition. Finally, we check via theE (∙) function that for
any candidate equilibria

(
y∗

AB, R̄AB
)
, there is no profitable deviation̄y′

i at any level ofy.
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the light shading identifies risk-shifting during a freeze. The top right, bottom
right, and bottom left panels show the ex ante values of debt, equity, and total
firm values as a function of the maturity 1/δ, respectively. In all graphs, we
suppose the initial value of the fundamental isy0 = 1.2.14

From the perspective of total value, there are two different regions of
possible maturities. First, there are the “long” maturities, where the manager
engages in preemptive risk-shifting, as indicated by 1/δ ≥ 2.14 on the top left
panel of Figure4. Note that the manager plays a nonmonotone strategy, where
he preemptively risk-shifts over a range ofy above the rollover threshold,
reverts back to the good strategy close to the rollover threshold, and then risk-
shifts again once in the freeze. In this region, the marginal impact of shortening
the maturity is to improve value by disciplining preemptive risk-shifting.15

For shorter maturities over the range 1/δ < 2.14, incentives have been
maximized and the manager never risk-shifts unless the firm is experiencing
a freeze. Mathematically,̄yj AB = y∗

AB for j = 1, 2, 3. The marginal impact of
shortening the maturity in this region is twofold. First, shortening the maturity
of debt decreases the likelihood that the firm will survive a freeze in a direct
manner, since debt comes due very quickly and firm fundamentals may not
recover before the firm is liquidated from lack of funding. This decreases
firm value, but the effect is small. Second, shortening the maturity structure
also results in a higher equilibrium rollover thresholdy∗

AB and higher run
probabilities, as shown in Figure5, resulting in much lower value ex ante.
This effect is large.

The optimal maturity thus weighs the inefficiencies created by preemptive
risk-shifting against the inefficiencies created by rollover freezes. It turns out
that, for a wide range of parameterizations, the optimal maturity is the longest
possible maturity that eliminates preemptive risk-shifting, which is 1/δ = 2.14
years in our example. A shorter maturity leads to a higher willingness of
creditors to run, as measured by a higher rollover thresholdy∗

AB, while a longer
maturity leads to more risk-shifting by the manager and a lower creditor run-
threshold.

Despite the lower run-threshold at longer maturities, the value-maximizing
optimal maturity minimizes the probability of a run. At longer maturities, the
increased risk-shifting and thus higher volatility of the fundamental leads to a
higher likelihood that the fundamental reaches the run-threshold, even though
the run-threshold islower in this region. Figure5 demonstrates by plotting
the equilibrium ex ante probability of any run occurring as a function of debt
maturities. By limiting preemptive risk-shifting, the optimal maturity increases

14 We have investigated a number of different initial starting values. For starting values ofy outside of the freeze
region, our optimality results are qualitatively unchanged and hence we takey0 = 1.2 for expositional purposes.
Note that the strategies represented by the equilibrium points

(
y∗

AB, R̄AB
)

do not depend on any initial starting
value: a Markov-Perfect Nash equilibrium is dynamically consistent for all values ofy.

15 For extremely long maturities that lie far outside this graph, the preemptive risk-shifting region expands to the
run-threshold, so that the manager ends up playing a monotone strategy and risk-shifts for ally < ȳ1AB.
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Figure 5
Probability of any run occurring before τφ (i.e., P [inf {t : yt = y∗} < τφ ] ) given the initial value y0 = 1.2
The top panel plots this probability as a function of expected debt maturity 1/δ, and the bottom panel plots
this probability as a function of the bailout probabilityP(θ). The vertical line represents the value-maximizing
optimal maturity in the left- and optimal bailout policy in the right-hand panel.

total ex ante firm value by trading off a lower equity value in exchange for a
larger increase in debt value via a lower probability of a run. Additionally, it
increases value by eliminating the use of the dominated strategy outside of a
freeze situation.

We summarize with the following:

Result 1. The optimal maturity that maximizes the total value of the firm
is just long enough to eliminate preemptive risk-shifting, and is neither too
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short-term nor too long-term, and minimizes the probability of a run even
though creditors’ equilibrium run-thresholds would be lower for longer ma-
turities.

3.2 The value of risk-shifting
Figure6 plots the run-threshold, debt value, equity value, and total firm value
from the full equilibrium with risk-shifting in solid lines, and overlays the
values from the benchmark equilibrium as dashed lines. One observation from
the figure is that debt and equity values in the full equilibrium, where the
manager is allowed to risk-shift, are often higher than debt and equity values
in the benchmark equilibrium, where managers are never allowed to risk-
shift, which is puzzling in light of the usual intuition that risk-shifting is an
inefficiency. This is most clearly observed for maturities at and shorter than
the optimal maturity where preemptive risk-shifting has been eliminated. In
this section, we show that, in a dynamic framework, risk-shifting is not always
an inefficiency; indeed, risk-shifting during a run increases value.

We consider perturbing the benchmark equilibrium, in which the manager
is constrained to no risk-shifting, to a world in which the manager risk-shifts
whenever a run ensues, and show that both debt and equity values are higher
in this latter case. This isolates the pure effect of risk-shifting during a run, as
the manager is held to no preemptive risk-shifting and thus the probability law
of the fundamental outside of a run is not changing.

Figure 6
Rollover thresholds and firm value under full equilibrium (Figure 4) overlaid with rollover thresholds and
firm value under the benchmark equilibrium with no risk-shifting (Figure 3)
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Intuitively, risk-shifting during a freeze has two beneficial effects. The first is
a direct effect: increasing the asset volatility actually increases the likelihood
that the firm escapes the freeze before it is liquidated from lack of funding.
While the lower drift of the bad strategy hurts the firm’s fundamental in
expectation, this negative effect is outweighed by the higher volatility of the
bad strategy, which increases the likelihood that the firm escapes the freeze
before it is liquidated.

Second, this direct effect feeds through debt values to lead to a substantial
indirect equilibrium effect. Risk-shifting during the freeze alleviates the
intertemporal wedge between the interest of today’s maturing creditors and
future creditors through the increased likelihood of the firm escaping the
freeze. The increased volatility from risk-shifting transfers value away from
the “claimant” liquidation cost to both debt and equity by mitigating the
coordination problem among creditors. Even though the drift of strategy B is
lower, this cost is very small relative to the benefit when liquidation is likely.16

In Proposition2, we provide a sufficient condition for when risk-shifting
during a run increases value relative to the benchmark equilibrium where the
manager can never risk-shift; that is, where we fix the strategy of the manager
outside the run to strategy A.17 We show that there is an analytical bound
y# for which risk-shifting during a run increases value for any run-threshold
y∗ that arises betweeny# and 1.18 Although y∗ is endogenously determined
in the benchmark equilibrium (which is unique), Proposition2 highlights
the intuition that risk-shifting increases value when the possibility of runs is
nontrivial.

Proposition 2. For sufficiently strong runs with 0< y# < y∗ < 1, wherey#

is an analytical bound provided in the Appendix, risk-shifting solely during a
run increases value relative to the case where managers are constrained to no
risk-shifting.

Proposition2 shows that risk-shifting during a run increases value, and
explains why the value of the full equilibrium is higher than the value of the
benchmark equilibrium for maturities at or shorter than the optimal maturity

16 One can think of the providers of emergency financing (either the government or a third party) as a claimant to
the firm as well. Here, the effect of risk-shifting on these credit providers is ambiguous, but is often small
compared to the overall value gain on debt plus equity. We explicitly discuss this additional claimant in
Section4.

17 Note that in this proposition, the run-threshold has a one-to-one relation with the ex ante probability of
experiencing a run, as the dynamics ofy outside the run are the same. This is in contrast to the full model,
which in addition to risk-shifting during a run also allows for preemptive risk-shifting, thus breaking the one-
to-one relation of the run-threshold with the ex ante probability as discussed in the previous subsection, as the
dynamics ofy outside the run can now be different.

18 We provide an alternative condition in the Appendix as a function of model parameters to test whether risk-
shifting during a run increases for a run-threshold with1 < y∗ < yL . However, the condition does not reduce
as easily. Additionally, we prove thaty∗

A < 1 for some parameter restrictions in Lemma3 in the Appendix.
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in Figure6. In the upper left-hand panel, at the optimal maturity 1/δ = 2.14
years, we havey∗

AB < y∗
A; as shown in the proposition, constraining

the manager to no risk-shifting increases the run-threshold and results in
a reduction of firm value from 1.8 to 1.72, a roughly 4.4% decrease, as
demonstrated in the bottom left-hand panel. For maturities longer than the
optimal maturity, allowing the manager to risk-shift in the full equilibrium
mixes both the positive effect of risk-shifting during a run with the negative
effect of preemptive risk-shifting, the latter of which increases the probability
of a freeze. However, forcing the manager to always adopt strategy A still
reduces value for a wide range of maturities even above the optimal maturity,
as evidenced in the bottom left-hand panel of Figure6, where firm value in the
full equilibrium is higher for maturities below approximately 5.5 years.19

These results highlight the distinction between preemptive risk-shifting and
risk-shifting during a freeze. The standard literature argues that managers
“gamble for resurrection” when firm fundamentals are low and that this
destroys value. This is because risk-shifting in these models induces a wedge
between debt and equity. Our model suggests that risk-shifting during a freeze
can be optimal when the intertemporal coordination problem among creditors
is severe. This is because there is an additional wedge in our model: the
wedge between the interest of today’s maturing creditors and future maturing
creditors, which is mitigated by risk-shifting during a run.

In our model, productive inefficiencies can be used to increase total value
by mitigating contractual inefficiencies. Employing strategy B is a productive
inefficiency in the sense that it represents a deadweight loss of value relative
to employing strategy A in a first-best world without frictions. However, using
strategy B during a run alleviates the friction between creditors, generating
value for the firm. Thus, debt policy should avoid covenants restricting
managers’ strategies when maturities are short. When a firm faces asset-side
risk in the form of production inefficiencies, this “risk” may actually have a
bright side in alleviating the liability-side risk stemming from how the firm is
financed. We summarize with the following:

Result 2. For debt maturities that are sufficiently short-term, allowing the
manager the capability to risk-shift increases creditor confidence and is value-
increasing. Thus, short-term debt should not contain covenants that restrict
managerial investment decisions.

19 For very long maturities, it becomes optimal to constrain the manager to no-risk-shifting, as the negative effect
of the preemptive risk-shifting outweighs the gain from risk-shifting during a freeze. Indeed, the run probability
is lowered by eliminating risk-shifting in this case even though the run-threshold becomes higher. In comparing
whether it is better to issue debt at the optimal maturity and allowing the manager to risk-shift during a freeze
versus issuing debt at a very long maturity while constraining the manager not to risk-shift (perhaps through
regulatory measures), the two policies result in firm values that are very close, as the bottom left panel indicates.
If constraining the manager not to risk-shift involves ancillary costs such as contracting or monitoring costs, our
analysis shows that issuing debt at the optimal maturity and allowing the manager to risk-shift during a freeze is
superior.
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4. Market-based Emergency Financing

The previous section left out one implicit claimant to the firm’s balance
sheet, the provider of interim financing during a rollover freeze. We now
consider an interpretation where we think of the firm in the model as the
broad financial sector and where the government provides this emergency
financing via a market-based intervention, which we label a “bailout.” In
our version of a bailout, the government uses a market-based intervention
by paying maturing creditors who wish to leave[1 − D (y)]+, which is just
enough on the margin to incentivize them to roll over.20 However, these
bailouts may not be completely reliable in that emergency financing may dry
up, in which case the freeze creates severe distress in the financial system.
The bailout reliability is parameterized byθ , which the government commits
to at time 0. We assume that the government cannot condition on the exact
state of the financial system, and can only condition on whether a freeze is
occurring. For example, political economy considerations may not allow a
more fine-tuned intervention. More broadly, we can interpretθ as randomizing
between bailouts (e.g., Bear Stearns) and failures (e.g., Lehman Brothers).21

We focus our discussion on the optimal bailout reliability, given an observed
maturity structureδ of the sector. That is, we fixδ and look for the optimalθ
at time 0. A no-bailouts policy is captured byθ → ∞, whereas a policy that
always bails out is equivalent toθ = 0. A more intuitive interpretation in
terms of probabilities instead of intensities is provided through the transform
P (θ) = e−θ , which gives the probability of survival for a continuous freeze
of length 1/δ. Bailing out with probability one then corresponds toP (0) = 1,
whereas bailing out with probability zero corresponds to limθ→∞ P (θ) = 0.

The optimal bailout reliabilityθ maximizes the total ex ante valueF , which
we define to be the total value of the system (debt plus equity) less any
expected government losses. The optimal bailout intensity balances the asset
and liability-side risks to the firm, but through a different channel than the
optimal maturity. Changing the maturity of debt affects the expected maturity
of creditors and hence both the likelihood of incurring a run, as well as
the likelihood of liquidation during a run. In contrast, changing the bailout
intensity θ only affects the likelihood of liquidation but not the expected
maturity to each debtholder, and thus represents a distinct channel.

To compute expected government losses, we need to measure how often and
how much the government is called upon to contribute for a given strategyθ ,
taking into account the possibility of any future risk-shifting and debt runs.

20 An alternative interpretation of this bailout strategy is that the government purchases debt from distressed firms
at face value1. It then immediately sells this debt on the open markets forD (y), making a loss of[1 − D (y)]
per unit of debt bailed out.

21 Our model is agnostic as to the source of emergency financing, which, strictly speaking, could be provided by
entities other than the government. In other words, there is no market failure in our model that prevents private
insurance except possibly limited resources.
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Denote byG (∙) this expected cost to the government as a function ofy, so
that total ex ante value isF (y) = D (y) + E (y) − G (y). The government
subsidy per unit of time can be written as[1 − D (y)]+ = 1{y<y∗} [1 − D (y)].
Thus, fory < y∗, the government continuously provides emergency financing
to a measureδdt of maturing creditors until either the bailout expires and the
system experiences liquidation, the terminal value of the asset realizes, or the
fundamentals improve sufficiently so that creditors have enough incentive to
roll over their debt without a bailout. The functionG can then be written as

G
(
y|y∗, R̄

)
= Et

[∫ τ

t
e−ρsδ1{y<y∗} [1 − D (y)] ds

]
, (4)

where τ = min
{
τθ , τφ

}
as before. In the Appendix, we provide the

closed-form solution ofG
(
y|y∗, R̄

)
up to the thresholds

(
y∗

AB, R̄AB
)
.

4.1 Optimal emergency financing
We look for the bailout reliabilityθ that maximizes the total value of the
systemF . Intuitively, a higher bailout reliability can create value by providing
financing to the system during a rollover freeze and help avoid distressed
liquidation. However, there are a number of potential costs. Naturally, bailouts
could incur high expected government losses. Furthermore, bailouts weaken
the incentives provided by short-term debt, and thus could lower ex ante
equity and debt value by encouraging the manager to adopt strategy B more
frequently.

To disentangle these effects, we compute equilibrium run-thresholds, risk-
shifting regions, government losses, and total system value (debt plus equity
less government losses) for different bailout policies, as shown in Figure7.
To fix ideas, we take the maturity structure at a constantδ = 10. The upper
left-hand panel plots the run-thresholdy∗

AB as the thick solid line and the risk-
shifting regionR̄AB as the gray shaded areas. The upper right-hand panel plots
the debt value, while the lower right-hand panel plots government losses, and
the lower left-hand panel plots total system valueF .

From the perspective of total system valueF , there are two distinct regions
of P (θ). For P (θ) < 0.55, the marginal effect of increasing bailout reliability
is to boost total value, as seen in the lower left-hand panel of Figure7.
Interestingly, increasing the bailout reliability in this region actually can
lower expected government losses. Boosting bailout reliability here is value-
increasing because it creates creditor confidence without worsening incentives.
In contrast, forP (θ) > 0.55, increasing bailout reliability destroys total
value as it creates preemptive risk-shifting and also results in higher expected
government losses.

More specifically, a bailout more reliable than the optimum leads to a lower
creditor run-threshold but more preemptive risk-shifting, which perversely
increases the equilibrium probability of a freeze, as shown in Figure5.
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Figure 7
Rollover thresholds and firm value under full equilibrium (solid) and no-risk-shifting equilibrium
(dashed) as a function of the probability of emergency financing P (θ)
The upper left-hand panel has values ofy on the vertical axis and plots the rollover thresholdy∗

AB as the thick

black line along with the risk-shifting region̄RAB as the shaded region. The benchmark rollover threshold
from the no-risk-shifting equilibriumy∗

A is plotted as the dashed black line. The upper right-hand panel plots
debt value aty0 = 1.2, while the lower right-hand panel plots expected government losses. The lower left-hand
panel plots total system value F= E + D − G, which is the value of debt plus equity less expected government
losses. In all panels, the vertical line marks the optimal bailout reliability.

Furthermore, a more reliable bailout results in high expected government
losses, as evidenced in the lower right-hand panel of Figure7 for P (θ) > 0.55.
This is not only because freezes are more likely, but also because creditors
require a larger amount to incentivize them to roll over during a freeze
when incentives are weak and the system is tilted toward the bad strategy.
A less reliable bailout than the optimum, on the other hand, is inefficient
as it increases the probability of a run when incentives have already been
maximized.

In our parameterizations, the optimal bailout reliability is positive at
P (θ) = 0.55 and minimizes the probability of a run by avoiding the inefficient
freezes of shorter maturities while preserving maximum incentives and avoid-
ing the preemptive risk-shifting associated with longer maturities.22 Notably,

22 Our result on the optimal bailout reliability is qualitatively similar to our result on debt structure, which is
not surprising because bailouts essentially extend the expected survival time during a freeze, while short debt
maturities decrease it. As a robustness check, we isolate the channel that works through the flow of maturing
creditors while leaving the liquidation intensity untouched by looking at equilibria along the diagonal ofθδ = 10,
on which our benchmark point lies. We find that no bailouts, i.e.,θ → ∞, are suboptimal even when we lengthen
the maturity to keep the liquidation intensity constant. Thus, neither a very short maturity-highly reliable bailout
combination nor a long maturity-unreliable bailout combination is optimal.
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this optimal bailout reliability is associated with a local minimum of expected
government losses, as shown by the solid line in the lower right-hand panel of
Figure7. To summarize:

Result 3. Limited probabilistic/randomized bailouts can be optimal by boost-
ing creditor confidence, even in the presence of incentive effects.

5. Further Discussion

5.1 Modeling assumptions
Our model relies on a number of assumptions and modeling devices. First,
we abstract away from the initial capital structure decision and assume the
firm needs debt in order to focus on the impact of debt maturity on incentives.
Our baseline assumption is that the firm uses debt financing to provide some
incentives; if incentives are maximized without debt, there is no need for short
maturities to provide additional incentives.

As with asset maturity, we model the maturity of debt as random for
tractability purposes. The random maturity itself is not the key feature; debt
maturity could be deterministic.23 The maturing creditor’s problem would
then be to compare the time-T value of nonmaturing debt to the face value of
debt, 1. The random maturity allows us to focus on a stationary value function
for nonmaturing debt, which simplifies the computation of firm value. Rather,
the important feature is the second assumption that debt maturity is staggered.
We motivate this assumption empirically. For example,He and Xiong(2011a)
document that Morgan Stanley had short-term debt maturing continuously
over a two-month period from February through March 2009. More broadly,
Barclay and Smith(1995) document that debt maturities are not concentrated
at a single point in the future among a broad cross-section of firms in CRSP
and Compustat.

The model also assumes that the firm may refinance debt via credit lines
when debt is not rolled over, the strength of which is determined byθ . In
a wider sense, the parameterθ can be interpreted as the strength of the
company’s cash holdings. However, actually introducing cash reserves would
result in a second state variable that would make the model very hard to solve.
Instead, our model may be interpreted as applying to a worst-case scenario
when cash holdings have been exhausted and the firm must rely on credit line
financing. Indeed, our model is “cashless” in that all cash flows have already
been promised to debtors.

23 We use random maturity for the same reason thatLeland(1998) employed the paydown assumption: whereas
in Leland and Toft(1996) the authors are able to solve the PDE involving bothy and t (time to maturity) for
a deterministic maturityT via direct hitting time density methods, this solution method cannot be applied to a
model in which the dynamics of the process itself change because of risk-shifting. Classic hitting time density
results do not apply. We are thus left with a PDE forD (y, t) in y andt that has among its boundary conditions
D (y, 0) = max{1, D (y, T)} , ∀y and D (0, t) = r

ρ+φ+ 1
T θ

, ∀t (assuming creditors run fory close to 0). This

PDE is beyond our ability to solve in closed form.
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We also assume that the promised cash flowr of the debt is fixed,
without possibility of renegotiation. Although this is a stylized assumption,
we motivate it using the following three insights. First, suppose the firm could
attract new financing during a debt run by promising a higher cash flowr .
This may actually lead creditors to preemptively demand higher payments and
may tighten the firms’ financing ability instead of relaxing it, leading to a
qualitatively similar “run” mechanism. Second, there may be frictions in the
debt market that prevent the promised cash flow from fully adjusting. In reality
there are situations (e.g., for Lehman Brothers) where no one was willing to
lend at any interest rate. Third, since all of the future cash flows of the projects
have already been securitized, raising new debt would mean giving up parts
of the equity. Even whenr is flexible, there will still be a point beyond which
there is not enough cash flowr to continue to roll over debt of face value 1.
Even deep-pocketed equity holders will have a point beyond which they are
unwilling to inject money to prop up the debtholders (Leland 1994; He and
Xiong 2011b). For these reasons, we also abstract away from a dynamic capital
structure.

5.2 Comparative statics and numerical robustness
We conduct a series of numerical robustness checks to test our conclusions in
different regions of the parameter space. For brevity, we focus on comparative
statics with respect to the quality of strategy A (captured by the better drift of
strategy A,μA) and also the benefit of risk-shifting (captured by the higher
volatility of the bad strategy,σB). Figure8 illustrates two optimal maturities
and optimal bailout intensities across a grid of possible driftsμA andσB.

The upper left-hand panel examines the optimal maturity as a function of
μA. Higher values of the drift of strategy A tilt the optimal maturity toward
short-term debt. The reason is that a higher drift of strategy A increases debt
values, as the firm’s basic strategy is better. This reduces the run-threshold
y∗ and hence the run pressure. However, the decline in the run pressure is
too large to prevent preemptive risk-shifting and therefore must be offset by a
shorter maturity structure to restore the optimal level of incentives. Similarly,
higher values ofμA imply lower optimal bailout reliabilities, as shown in the
lower left-hand panel.

The upper and lower right-hand panels of Figure8 examine the optimal
maturity and bailout reliability as a function ofσB. Higher volatilities of
the bad strategy imply shorter optimal maturities and lower optimal bailout
reliabilities. Higher volatilities lead to a stronger incentive for the manager
to preemptively risk-shiftbefore the run, which must be controlled with
a shorter maturity structure and lower bailout reliability. However, asσB

increases, the value of risk-shiftingduring the run is actually higher at each
one of the new shorter optimal maturities, since the higher volatility alleviates
the intertemporal coordination problem among the creditors. Therefore, as
σB increases, it becomes more important to not constrain the manager to
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Figure 8
Optimal maturities 1/δ∗ and bailout intensities P(θ∗) as a function ofμA and σB
Longer optimal debt maturities correspond to higher values of 1/δ∗, and higher optimal bailout reliabilities are
associated with higher P(θ∗). The upper left-hand and lower left-hand panels plot the optimal maturity 1/δ∗

and optimal bailout reliability P(θ∗), respectively, as a function ofμA. The upper right-hand and lower right-
hand panels plot the optimal maturity 1/δ∗ and optimal bailout reliability P(θ∗), respectively, as a function of
σB. In the upper right-hand panel, the optimal 1/δ∗ increases very sharply forσB < 0:25, past 30 years (not
shown).

no-risk-shifting via covenants. These results highlight the difference between
preemptive risk-shifting and risk-shifting during the run.

Comparative statics alongμB and σA contain similar insights. A lower
drift μB increases the disciplining power of any given run-threshold (as it
is reached more often with a lower drift), and thus the optimal maturity or
bailout probability can be increased to lower the run-threshold while still
retaining enough power to keep the manager from preemptively risk-shifting.
Similarly, a higher volatilityσA increases the disciplining power of any given
run-threshold, and thus again the optimal maturity or bailout probability can be
increased to lower the run-threshold while still retaining enough disciplining
power to prevent preemptive risk-shifting. For brevity, we omit these graphs.

Since our results hold for these additional parameters, this also suggests
that our results are robust in a wider range of parameter regions. Indeed, risk-
shifting during the run also increases value relative to the no-risk-shifting case
for each of the above parameter values. The comparative statics represent four
perturbations per parameters, yielding sixteen perturbations. We have also
checked additional initial pointsy0. Also, we have tested our results using a
completely different set of parameter values as well, and our qualitative results
are unchanged.
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5.3 Empirical comparison
We next examine how our computed optimal maturity compares with empirical
data.Covitz, Liang, and Suarez(2009) establish that the average maturity of
ABCP issued by conduits in 2007 had an average maturity of around one
month, and that this if anything shortened toward the end of 2007. Here, we
also examine the maturity debt of 10 U.S. primary dealers in 2006, as few
empirical studies focus on the debt maturity of large financial firms.24 In 2006,
70% of total debt was due inside one year, while 30% of total debt outstanding
was debt due outside of one year, implying that the median debt maturity was
less than one year. Among the six U.S. primary dealers who provide a detailed
breakdown of debt due outside of one year, 26% of total debt was due outside
of one year, 19% was due outside of two years, 14% due outside of three years,
11% due outside of two years, and 8% due outside of five years. This pattern
holds even when only examining primary dealers that were not part of a bank
holding company in 2006; for example, Bear Stearns was financed with 75%
of its debt due within one year; Lehman Brothers, 79%; Merrill Lynch, 72%;
Goldman Sachs, 72%; and Morgan Stanley, 80%.

For U.S. manufacturing firms (SIC2 20-39), the pattern is almost exactly
the opposite: 29% of total debt was due inside one year, with 71% of debt
due outside of one year. A further breakdown of the debt due outside of one
year reveals that 57% of total debt was due outside of two years, 47% outside
of three years, 37% outside of four years, and 27% outside of five years.25

Although it is difficult to draw definitive conclusions without a more careful
calibration, the results indicate a pattern of short-term debt financing for large
U.S. nonbank financial firms with debt maturities shorter than our implied
optimal maturity of 1/δ = 2.14 years.

6. Conclusion

So, is short-term debt ultimately optimal? In this article, we constructed a
model of a nonbank financial firm that faces rollover externalities because of
the use of staggered short-term debt (as inHe and Xiong 2011a) and introduced
equity and incentive problems in the form of managerial risk-shifting. We
also analyze expected government losses as a function of the reliability of
emergency financing and analyzed its interaction with freezes and risk-shifting.
Our results highlight that risk from the asset and liability sides of the balance
sheet interact in a dynamic setting and have nontrivial implications for how
incentives and debt should be structured. The primary conclusions are that debt
can be too short-term, covenants that constrain managerial actions should be

24 Our data source is CRSP-Compustat; seeCheng, Hong, and Scheinkman(2011) for a detailed data description.
Our variables of focus are DLC (debt in current liabilities), DD1 (debt due in one year, included in DLC), and
DD2-DD5 (debt due in 2, 3, 4, and 5 years). Our measure of total debt is DLC (debt in current liabilities) plus
DLTT (total long-term debt).

25 These numbers are comparable to Table1 in Barclay and Smith(1995).
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avoided, and bailouts can improve creditor confidence. Further research into
the dynamic interaction of risk from the asset and liability sides of the balance
sheet may shed further light on how to prevent future financial crises.

Appendix

The value functionsD (y) , E (y) given y∗, R̄

Lemma 1. Given a rollover thresholdy∗ and a risk-shifting regionR̄, possibly nonoptimal,
equity has the value function

E (y) = C+ (y) yη(y)+ + C− (y) yη(y)− + a (y) ∙ y + b (y)
︸ ︷︷ ︸

particular solution

,

whereη (y)+ > 1 > 0 > η (y)− solve f (η, y) = 0,

f (η, y) =
σ2

i
2

η2 +

(

μi −
σ2

i
2

)

η −
(
φ + ρ + 111{y<y∗}θδ

)
,

and

a (y) =
111{1<y}φ + 111{yL<y<y∗}θδl

ρ + φ + 111{y<y∗}θδ −
(
1{y∈R̄

}μB + 1{y∈R̄c
}μA

) ,

b (y) = −
111{1<y}φ + 111{yL<y<y∗}θδ (1 − L)

ρ + φ + 111{y<y∗}θδ
,

where different{η, a, b, C±} apply in each of the intervals composed of the boundary points
0, 1, yL and the rollover and risk-shifting thresholds

{
y∗, ȳ1, ȳ2, ȳ3

}
. The coefficientsC± (∙) are

step functions solving a linear system stemming from value matching and smooth pasting at the
transition points 1, ȳ1, ȳ2, ȳ3, y∗, yL and the boundary conditionsC0

− = 0 andC∞
+ = 0. 26

Similarly, debt has the value function

D (y) = CC+ (y) yκ(y)+ + CC− (y) yκ(y)− + aa(y) ∙ y + bb(y)
︸ ︷︷ ︸
particular solution

,

whereκ (y)+ > 1 > 0 > κ (y)− solve f f (κ, y) = 0,

f f (κ, y) =
σ2

i
2

κ2 +

(

μi −
σ2

i
2

)

κ −
(
φ + ρ + 111{y<y∗} (θ + 1) δ

)
,

and

aa(y) =
1{y<1}φ − 1{yL<y<y∗}lθδ + 1{y<y∗}lθδ

ρ + φ + 1{y<y∗} (θ + 1) δ −
(
1{y∈R̄

}μB + 1{y∈R̄c
}μA

) ,

bb(y) =
r + 1{1<y}φ + 1{yL<y<y∗}θδ (1 − L) + 1{y<y∗}δ (θ L + 1)

ρ + φ + 1{y<y∗} (θ + 1) δ
,

26 WhereC0
− is shorthand forC− (y) with y ∈

(
0, min

{
1, ȳ1, ȳ2, ȳ3, y∗, yL

})
andC∞

+ is shorthand forC+ (y)

with y ∈
(
max

{
1, ȳ1, ȳ2, ȳ3, y∗, yL

}
, ∞

)
.
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where different{κ, aa, bb, CC±} apply in each of the intervals composed of the boundary points
0, 1, yL and the rollover and risk-shifting thresholds

{
y∗, ȳ1, ȳ2, ȳ3

}
. The coefficientsCC± (∙)

are step functions solving a linear system stemming from value matching and smooth pasting at
the transition points 1, ȳ1, ȳ2, ȳ3, y∗, yL and the boundary conditionsCC0

− = 0 andCC∞
+ = 0.

Proof. Let us first look at the debt value function. Note first thatf (0, y) < 0 and thatf (1, y) =
μ −

(
φ + ρ + 111{y<y∗}θδ

)
< μ − (φ + ρ) < 0 by assumption onμA andμB. Thus, we have

η (y)+ > 1 > 0 > η (y)−.
When the project realizes, the payoff to the creditor is min{y, 1}. Rewrite this as min{y, 1} =

1{y<1} (y − 1) + 1. Similarly, when the project is liquidated, the payout to the creditor is
min {L + ly, 1} = 1{y>yL } (1 − L − ly) + L + ly. With a slight abuse of notation, lety∗ be
a (possibly suboptimal) candidate symmetric rollover threshold. Because a proportionδ of debt
contracts matures eachdt, liquidation has an intensity ofδθ in the rollover freeze region,y < y∗.

In equilibrium, we know that at the rollover thresholdy∗, debt is worth 1, so that
max{0, 1 − D} = 111{y<y∗} (1 − D). We substitute1{y<y∗} (1 − D) for max{0, 1 − D} evenoff
the equilibrium path, so that the creditors (collectively) behave suboptimally for nonequilibrium
y∗. For a candidate symmetric equilibrium, we then need to check thatD

(
y|y∗, R̄

)
is increasing

in y. As there is only one state variabley, the HJB resulting from Equation (2) will result in the
following ODE:

ρD =

μyDy + σ2

2 y2Dyy + φ
(
111{y<1} (y − 1) + 1 − D

)

+θδ1{y<y∗} (max{L + ly, 1} − D)

+δ111{y<y∗} (1 − D) + r

∣
∣
∣
∣
∣
∣
∣
∣
∣





i = A y ∈ R̄c

i = B y ∈ R̄

⇐⇒ ρD =

μyDy + σ2

2 y2Dyy + φ
(
111{y<1} (y − 1) + 1 − D

)

+θδ
[
111{yL<y<y∗} (1 − L − ly) + 111{y<y∗} (L + ly − D)

]

+δ111{y<y∗} (1 − D) + r

∣
∣
∣
∣
∣
∣
∣
∣
∣





i = A y ∈ R̄c

i = B y ∈ R̄

,

where we substituted out the max{∙} function via the appropriate indicator functions. The first two
terms on the right-hand side (RHS) are simply the Ito terms from the dynamics of the state variable
y. The third term is the payoff when the project matures,τφ , whereas the fourth term is the payoff
of the project being liquidated,τθ . The fifth term is the payoff from the debt maturing,τδ (i.e.,
either rolling over or collecting the face value), and the last term is simply the interest rate.

Similarly, for equity we have the following ODE:

ρE =
μi yEy +

σ2
i
2 y2Eyy + φ (max{y − 1, 0} − E)

+θδ111{y<y∗} (max{L + l i y − 1, 0} − E)

∣
∣
∣
∣
∣
∣





i = A y ∈ R̄c

i = B y ∈ R̄

⇐⇒ ρE =
μi yEy +

σ2
i
2 y2Eyy + φ

(
111{1<y} (y − 1) − E

)

+θδ
(
111{yL (i )<y<y∗} (L + l i y − 1) − 111{y<y∗}E

)

∣
∣
∣
∣
∣
∣
∣





i = A y ∈ R̄c

i = B y ∈ R̄

,

where once again we substituted out the max{∙} function via the appropriate indicator functions.
The first two terms on the RHS are once again simply the Ito terms fory. The third term is the
payoff of the project realizing, and the last term is the payoff from the project being liquidated.
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Value matching and smooth pasting at transitional points, i.e., points that can be recrossed and
are thus not absorbing, are properties of the value function that directly derive from its definition as
a conditional expectationEt [∙]. The step functionsC± (∙) (CC± (∙)) for equity (debt) thus solve a
linear system stemming from value matching and smooth pasting at the transitional points and the
boundary conditionsC0

− = 0 (CC0
− = 0) andC∞

+ = 0 (CC∞
+ = 0). The boundary conditions

follow from some basic economic observations:C∞
+ = 0 follows from the fact that equity cannot

grow faster than the frictionless total value of the firm under the projectA, r
ρ+φ + φ

ρ+φ−μA
y,

which is linear iny, i.e., limy→∞ E (y) /y < ∞. Similarly, C0
− = 0 follows from the value

function remaining bounded asy → 0. CC0
− = 0 andCC∞

+ = 0 follow from the observation that
the payoff to debt is bounded for bothy → 0 andy → ∞, respectively. �

In He and Xiong(2011a), the project technology is fixed at A and there are no managerial
incentive considerations. The only decision left in the model without project choice is for creditors
to decide when to stop rolling over. The equilibrium will thus be solely determined by the debt
functionD. We conjecture a cutoff Markov strategy with creditors refusing to roll over fory < y∗.
In our notation, if the manager always plays A, the risk-shifting set is empty,R̄ = ∅.

Corollary 1 (He and Xiong). For a given rollover thresholdy∗, the creditors’ value function
will be

D
(
y|y∗) ≡ D

(
y|y∗, ∅

)
= CC+ (y) yκ(y)+ + CC− (y) yκ(y)− + aa(y) ∙ y + bb(y)

︸ ︷︷ ︸
particular solution

,

whereκ (y)+ > 1 > 0 > κ (y)− solve f f (κ, y) = 0,

f f (κ, y) =
σ2

A
2

κ2 +

(

μA −
σ2

A
2

)

κ −
(
φ + ρ + 111{y<y∗} (θ + 1) δ

)
,

and

aa(y) =
1{y<1}φ − 1{yL<y<y∗}lθδ + 1{y<y∗}lθδ

ρ + φ + 1{y<y∗} (θ + 1) δ − μA
,

bb(y) =
r + 1{1<y}φ + 1{yL<y<y∗}θδ (1 − L) + 1{y<y∗}δ (θ L + 1)

ρ + φ + 1{y<y∗} (θ + 1) δ
,

and where different{κ, aa, bb, CC±} apply in each of the intervals composed of the boundary
points 0, 1, yL and the rollover and risk-shifting thresholdsy∗. The coefficientsCC± (∙) are
step functions solving a linear system stemming from value matching and smooth pasting at the
transitional points

{
1, yL , y∗} and the boundary conditionsCC0

− = 0 andCC∞
+ = 0.

Let y∗
A denote the equilibrium rollover threshold in this scenario, so that the equilibrium

condition is D
(
y∗

A|y∗
A

)
= 1. He and Xiong’s (2011a) result actually goes further than the

above corollary in that they can show existence and uniqueness of the symmetric equilibrium
y∗

A analytically. First, note that for any finite, strictly positivey∗, we have limy→∞ D
(
y|y∗) =

r +φ
ρ+φ > 1 and limy→0 D

(
y|y∗) = r +δ(θ L+1)

ρ+φ+δ(θ+1) < 1. Second, one can analytically show that

W (y) ≡ D (y|y) is increasing and only crosses 1 once (aty∗
A). Third, it is possible to show that

D
(
y|y∗

A

)
is strictly increasing and continuous iny, so that individual optimality for refusing to

roll over below the equilibrium thresholdy∗
A is established.

We will use this simple lemma in the next proof.
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Lemma 2. Consider the fundamental equationax (x − 1) + bx − c = 0 with a, b, c > 0 and
b < c. Its roots behave as follows:

lim
a→0

x+ =
c

b
,

lim
a→0

x− = −∞,

lim
a→∞

x+ = 1,

lim
a→∞

x− = 0.

Proof. The roots of the fundamental equation are

x+ =
a − b +

√
(a − b)2 + 4ac

2a
,

x− =
a − b −

√
(a − b)2 + 4ac

2a
.

It is straightforward to check that lima→0 x− = −2b
2∙”0” = −∞. For lima→0 x+, we have−b+b

2∙”0” =
”0”
”0” . The L’Hopital Rule gives

lim
a→0

x+ =

1 + (a−b)+2c√
(a−b)2+4ac

2

∣
∣
∣
∣
∣
∣
∣
∣
a=0

=
c

b
.

By a similar argument, we have lima→∞ x+ = 1 and lima→∞ x− = 0. �

Lemma 3. Suppose there is no risk-shifting, i.e., the process has drift ofμA and volatilityσA.
Then, for very short maturities (i.e.,δ → ∞), the run-threshold isyL . Furthermore, for very long
maturities (i.e.,δ → 0) and low enough volatilityσA, the run-threshold isy∗ < yL , and for even
lower volatility, the run-threshold isy∗ < 1. Thus, we have the run-threshold decreasing with

maturity at least on parts of the parameter space,∂y∗

∂δ > 0, for some interval(s) ofδ ≥ 0.

Proof. First, by the definition of the value function as an expectation, we have asθ → ∞ the fact
that for anyy ≤ y∗ liquidation happens immediately, such that

lim
θ→∞

D
(
y|y∗) = L + ly,

so that aty = y∗ we must haveV
(
y∗|y∗) = 1, which impliesy∗ = yL . Applying the same logic

to δ → ∞, we know that for a fixedθ and fory ≤ y∗ we have for the individual creditor the joint
event liquidation or rollover happening immediately as both events’ intensities are of the orderδ.
Thus, we have

lim
δ→∞

D
(
y|y∗) =

θ

θ + 1
(L + ly) +

1

θ + 1
max

{
1, lim

δ→∞
D
(
y|y∗)

}
,

so that aty = y∗ we must again haveD
(
y∗|y∗) = 1, which givesy∗ = yL . Thus, the limit

run-threshold isy∗ = yL as eitherθ andδ increases without bounds. We will now show that for
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small enoughδ and large enoughμA (and/or small enoughσ2), we must havey∗ < yL . We will
use the notation of HX, Appendix A.1, Proof of Theorem 1, Case 3 of Lemma 7. Suppose Case 3
holds true, i.e., 1≤ yL ≤ y∗. Then, we know that we must have fory∗ ↘ yL ,

D (yL |yL ) =
r + φ + (θ + 1) δ

ρ + φ + (θ + 1) δ
+ C4y

κr
−

L + C5y
κr
+

L ≤ 1,

whereκr
− < 0 andκr

+ > 1 are the negative and positive root inside the run region, andκnr
− < 0

andκnr
+ > 1 are the roots outside of the run region. The parameters are given by

C5y
κr
+

L =

(
−κr

− + κnr
−
)

C4y
κr
−

L + κr
+K1

κr
+ − κnr

−
,

C4y
κr
−

L =
κr
+K4 − K5

κr
+ − κr

−
y
κr
−

L −
κr
+K2 + K3yL

κr
+ − κr

−
,

and where

K1 =
r + φ + (θ + 1) δ

ρ + φ + (θ + 1) δ
−

r + φ

ρ + φ
,

K2 = lθδyL

(
1

ρ + φ + (θ + 1) δ
−

1

ρ + φ + (θ + 1) δ − μA

)
,

K3 = lθδ

(
1

ρ + φ + (θ + 1) δ − μA

)
,

K4 = φ

(
1

ρ + φ + (θ + 1) δ − μA
−

1

ρ + φ + (θ + 1) δ

)
,

K5 = φ

(
1

ρ + φ + (θ + 1) δ − μA

)
.

We can check that 1< κr
+ <

K5
K4

= ρ+φ+(θ+1)δ
μ by plugging inx = ρ+φ+(θ+1)δ

μ into the
fundamental equation forκ and realizing that it is positive. We thus have the following inequality:

K4 − K5 = −
φ

ρ + φ + (θ + 1) δ
< K4κr

+ − K5 < 0.

Note thatδ → 0 implies thatκr
+ ↘ κnr

+ andκr
− ↗ κnr

− . Plugging inδ = 0, we see that the first

term ofV (yL |yL ) becomesr +φ
ρ+φ > 1. Furthermore, we note thatK1 = K2 = K3 = 0 for δ = 0.

Thus, the only remaining terms are

lim
δ→0

D (yL |yL ) =
r + φ

ρ + φ
+

κr
+K4 − K5

κr
+ − κr

−
y
κr
−

L . (A.1)

As σ2
A → 0, by the preceding lemma we haveκr

− → −∞. As yL ≥ 1, the second term vanishes

asK4, K5, andκr
+ all stay finite, leavingr +φ

ρ+φ > 1, a contradiction. We thus must havey∗ < yL
(as He and Xiong show thatD (x|x) is monotonically increasing inx).

Second, we will show a contradiction foryL > y∗ > 1 for low enoughσ2
A. Again, using He

and Xiong’s notation, we have fory∗ ↘ 1 in Lemma 7, Case 2, the following debt value function:

D (1|1) =
r + φ + (θ L + 1) δ

ρ + φ + (θ + 1) δ
+

θδl

ρ + φ + (θ + 1) δ − μA
+ B2 + B3,
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where

B2 =
M2κr

+ − M1

κr
+ − κr

−
,

B3 =

(
−κr

− + κnr
−
)

B2 + κnr
− M3 − θδl

ρ+φ+(θ−1)δ−μA

κr
+ − κnr

−
,

and

M1 =
φ

ρ + φ + (θ + 1) δ − μA
,

M2 =
θ

ρ + φ + (θ + 1) δ − μA

μA

ρ + φ + (θ + 1) δ
,

M3 =
r + φ

ρ + φ
−

r + φ + (θ L + 1) δ

ρ + φ + (θ + 1) δ
−

θδl

ρ + φ + (θ + 1) δ − μA
.

Note thatK5 = M1 andK4 = M2, so that we have

M2 − M1 = −
φ

ρ + φ + (θ + 1) δ
< M2κr

+ − M1 < 0.

Note that whenδ → 0, we haveκr
+ ↘ κnr

+ andκr
− ↗ κnr

− . Furthermore, plugging inδ = 0 gives

M1 = φ
ρ+φ−μA

, M2 = M1
μA
ρ+φ , M3 = 0, and finallyB3 = 0. Thus, we are left with

lim
δ→0

D (1|1) =
r + φ

ρ + φ
+

κr
+M2 − M1

κr
+ − κr

−
. (A.2)

By the previous lemma, asσ2 → 0, we haveκr
+ = ρ+φ

μ andκr
− = −∞ so that the second term

vanishes, leaving us withr +φ
ρ+φ > 1, a contradiction. We thus must havey∗ < 1 (as He and Xiong

show thatD (x|x) is monotonically increasing inx). �
Numerically, for our benchmark parameter values we can check thaty∗ < 1 for low δ as long

asσ2
A < 0.259 ⇐⇒ σA < 0.507 by plugging into Equation (A.2), andy∗ < yL for low δ as

long asσ2
A < 0.334 ⇐⇒ σA < 0.578 by plugging into Equation (A.1).

Optimality: Derivation of the super-contact condition

Optimality of the manager’s strategy only depends on the equity value function. For a given value
function, then, the manager chooses A over B (instantaneously) when

μAyEy +
σ2

A
2 y2Eyy

+θδ111{y<y∗} max{L + ly − 1, 0}
>

μB yEy +
σ2

B
2 y2Eyy

+θδ111{y<y∗} max{L + ly − 1, 0}
,

and B over A when the other way around. Note that A and B enter the max equation directly only
throughμi andσi , and indirectly through the value functionE. But suppose we are already at the
optimum. Then, we have no change in the value function for an instantaneous switching between A
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and B. Thus, only the direct impact matters, and we are left with the following boundary condition
at ȳ from indifference between A and B:

μAȳE(A)
y +

σ2
A
2 ȳ2E(A)

yy

+θδ111{ȳ<y∗} max{L + l ȳ − 1, 0}
=

μB ȳE(B)
y +

σ2
B
2 ȳ2E(B)

yy

+θδ111{ȳ<y∗} max{L + l ȳ − 1, 0}
,

where the functionsE(i ) denote the value function with technologyi in use, i.e., A applies to the
right of ȳ, and B to the left.

We can now derive the super-contact condition. Suppose thaty∗ < ȳ. Then, we have by the
optimality of ȳ,

μAȳE(A)
y +

σ2
A
2

ȳ2E(A)
yy = μB ȳE(A)

y +
σ2

B
2

ȳ2E(A)
yy ,

μAȳE(B)
y +

σ2
A
2

ȳ2E(B)
yy = μB ȳE(B)

y +
σ2

B
2

ȳ2E(B)
yy ,

as the conditions have to hold approaching from the right (i.e., forE(A)) and from the left (i.e.,
for E(B)) of ȳ—the derivative does not change instantaneously when we switch strategies for adt
period. Write1x = xA − xB. Note that we have value matching and smooth pasting aty = ȳ.
Subtracting the bottom equation from the top one, we can derive the super-contact condition:

σ2
A
2

ȳ21Eyy =
σ2

B
2

ȳ21Eyy

⇐⇒
1σ2

2
ȳ21Eyy = 0

⇐⇒ E(A)
yy (ȳ) = E(B)

yy (ȳ) ,

where the last line follows from̄y 6= 0.
Suppose instead thaty∗ > ȳ. Then, we have

μAȳE(A)
y +

σ2
A
2 ȳ2E(A)

yy

+θδ1{yL<ȳ<y∗} (L + l Aȳ − 1)

=
μB ȳE(A)

y +
σ2

B
2 ȳ2E(A)

yy

+θδ1{yL<ȳ<y∗} (L + l B ȳ − 1)

,

μAȳE(B)
y +

σ2
A
2 ȳ2E(B)

yy

+θδ1{yL<ȳ<y∗} (L + l Aȳ − 1)

=
μB ȳE(B)

y +
σ2

B
2 ȳ2E(B)

yy

+θδ1{yL<ȳ<y∗} (L + l B ȳ − 1)

.

Subtracting the bottom equation from the top one, we can again derive the super-contact condition.
This of course only holds if the second derivative is continuous inȳ. This can cease to
hold at transitional points 1, yL , y∗ at which point we can have asymptotes with a switch in
sign. Sufficiency is checked numerically, as the sufficiency conditions are an even higher-order
condition that cannot be checked analytically in this model.

Never and always rolling over cannot be equilibria

Lemma 4. In the model, always rolling over and never rolling over cannot be equilibria.
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Proof. First consider a scenario where every maturing creditor rolls over, i.e.,y∗ = 0. We will
consider a one-shot deviation of a single maturing creditor, i.e., he can decide today whether or
not to rollover but will roll over in the future (if given the chance). Asy → 0, debt will be
worth D = r

ρ+φ < 1 by our parameter assumptions, whereas asy → ∞, debt will be worth

D = r +φ
ρ+φ > 1. From the continuity of the value function, we know thatD crosses 1 at some point.

It is below this point that the individual creditor will stop rolling over. But since the creditors are
identical, they all have the same incentives and thus shift their rollover threshold up. We conclude
that y∗ = 0 cannot be an equilibrium.

Now suppose every maturing creditor never rolls over, i.e.,y∗ = ∞. Again, we will consider a
one-shot deviation of a single maturing creditor, i.e., he can decide today whether or not to rollover
but will not roll over in the future. Asy → 0, the project will be worthD = r +δθ L+δ

ρ+φ+δθ+δ < 1, so
clearly for low levels ofy it is never profitable to roll over the debt. But, asy → ∞, debt is worth
D = r +φ+δθ+δ

ρ+φ+δθ+δ > 1, so there will be a point at which the creditor will want to stay in the firm

even if everyone else withdraws at the first chance they get. We conclude thaty∗ → ∞ cannot be
an equilibrium either. �

Optimality of risk-shifting during rollover freeze

Proposition 1 For any rollover threshold y∗ < 1, it is optimal for the manager to risk-shift on[
0, y∗].

Proof. We prove the statement forȳ < y < y∗ and 0< y < ȳ < y∗. For all othery > y∗, since
there is a positive probability of reaching pointy = y∗, we can rely on the recursive formulation
for optimality.

For expositional clarity, and without loss of generality, takeȳ1 = ȳ2 = ȳ3 = ȳ and assume
ȳ < y∗ (i.e., there is no preemptive risk-shifting; this doesn’t influence the incentives to risk-
shift for other values ofy as we have a recursive definition). Recall thatyL ≥ 1. We will look at
the derivative ofE

(
y|ȳ, y∗) w.r.t. ȳ. After substituting in the appropriate constantsC− (y) and

C+ (y) and some tedious algebra, we get the following results. Here,η1+ is shorthand forη+ (y)

with y ∈
(
0, min

{
ȳ, y∗, yL , 1

})
and so forth.

For y ∈
(
ȳ, y∗), we have

∂E
(
y|ȳ, y∗)

∂ ȳ
=

−





(
η1+ − η2−

) (
η1+ − η2+

) (
η2− − η2+

)
φ
(
φ + ρ − η3−μA

)

∙ȳη2−+η2+−1 (y∗)η3+
((

η2− − η3−
)

yη2+
(
y∗)η2− +

(
η3− − η2+

)
yη2−

(
y∗)η2+

)





(φ + ρ) (φ + ρ − μA)

∙







η2+ ∙ η3− ∙ ȳη2+
(
y∗)η2− − η2−

(
η2+ ∙ ȳη2+

(
y∗)η2− − η2+ ∙ ȳη2−

(
y∗)η2+

+ η3− ∙ ȳη2−
(
y∗)η2+

)

+η1+
(
η2− ∙ ȳη2+

(
y∗)η2− − η3− ∙ ȳη2−

(
y∗)η2+ + η3− ∙ ȳη2−

(
y∗)η2+

)







2

.

Note that
(
η1+ − η2−

)
> 0, η3− < 0,

(
η3− − η2+

)
< 0 and

(
η2− − η3−

)
< 0 directly

from their definitions. Also, by our assumptions in Section1.4, we have
(
η1+ − η2+

)
< 0 (4th

assumption) and(φ + ρ − μA) > 0 (3rd assumption). We conclude that this expression is positive
for all y ∈

(
ȳ, y∗).
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For y ∈ (0, ȳ), we have

∂E
(
y|ȳ, y∗)

∂ ȳ
=

−








(
η1+ − η2−

) (
η1+ − η2+

) (
η2− − η2+

)
φ
(
φ + ρ − η3−μA

)

yη1+ ȳ−1−η1++η2−+η2+
(
y∗)η3+

((
η2− − η3−

)
yη2+

(
y∗)η2−

+
(
η3− − η2+

)
yη2−

(
y∗)η2+

)








(φ + ρ) (φ + ρ − μA)

∙







η2+ ∙ η3− ∙ ȳη2+
(
y∗)η2− − η2−

(
η2+ ∙ ȳη2+

(
y∗)η2− − η2+ ∙ ȳη2−

(
y∗)η2+

+ η3− ∙ ȳη2−
(
y∗)η2+

)

+η1+
(
η2− ∙ ȳη2+

(
y∗)η2− − η3− ∙ ȳη2−

(
y∗)η2+ + η3− ∙ ȳη2−

(
y∗)η2+

)







2

.

By the same inequalities mentioned above, the expression is positive for ally ∈
(
ȳ, y∗).

What remains to be shown is that these assumptions are truly without loss of generality, i.e.,
consider a strategy by the manager that has risk-shifting on an interval(ȳ2, ȳ3) outside of

(
0, y∗).

Clearly, risk-shifting in the rollover region gives lower liquidation values conditional on default
(as the driftμB is lower thanμA). Thus, the benefit of risk-shifting must come from increasing
the probability of escaping the rollover region and thus increasing the probability on the non-
freeze value function. But if the value function outside of the freeze region can be improved by
risk-shifting on an interval(ȳ2, ȳ3), then clearly the trade-off between liquidation value today and
continuation value tomorrow becomes even more skewed toward the continuation value tomorrow,
and thus the incentives of the manager are even stronger in favor of risk-shifting on the freeze
region. �

The value of risk-shifting to debtholders

Full Statement of Proposition 2. Fix an exogenousrun-threshold y∗ ≤ 1, and assumeκnrs >

κrs. Then, risk-shifting during the run is beneficial to the debtholders that run at y∗ if and only if
A
(
y∗)κp + By∗ + C > 0, where

A = (κnrs − κrs)
{
κm

[
aa2 + bb2 − bb3

]
− aa2

}
< 0,

B =
[
aanrs (κnrs − 1) (κm − κrs) − aars (κrs − 1) (κm − κnrs) − (κnrs − κrs) aa2 (κm − 1)

]
,

C = (κnrs − κrs) κm
[
bb1 − bb2

]
< 0,

are only functions of the parameters of the model as defined in Lemma1. A sufficient condition for
risk-shifting to be beneficial to debtholders is y∗ ≥ −C

A+B with −C
A+B ∈ (0, 1).

Proof. Let us first introduce some notation. Assumingy∗ < 1, we are essentially looking at four
intervals,

[
0, y∗],

[
y∗, 1

]
, [1, yL ], and[yL , ∞). Denote parameters belonging to these intervals

by x1, x2, x3, andx4, respectively, wherex is a generic parameter. Further, letx1N RSandx1RS
denote parameters that arise in the non-risk-shifting and risk-shifting case, respectively. Then,
we make the following observations:aai RS = aai N RS, andbbi RS = bbi N RS for i ≥ 2. For
notational ease, let us drop the NRS and RS on these parameters. Further,κi ±N RS= κ j ±RS for
all i, j ≥ 1 by restriction the risk-shifting only to the run region. We also haveaa3 = aa4 = 0
andbb3 = bb4 = bb. Again, for notational ease, let us drop both thei and NRS or RS parameters,
so that we are only left withκ+ andκ−. The only time RS and NRS will make a difference is
on interval 1, for which only the positive root matters. We will denote the two different roots
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on interval 1 byκnrs andκrs. We additionally assumedκN RS > κRS. This is different from
ηN RS > ηRS that we assumed in the text as for debt there is an extra constant termδ in the root
equationf f (κ, y) = 0.

Define1D
(
y|y∗) = DRS(y|y∗)−DN RS(y|y∗), whereDRSdenotes the debt value function

in case there is only risk-shifting during a run(i.e., y1 = y2 = y3 = y∗) andDN RSdenotes the
same object in case there is never any risk-shifting.DN RS is thus the object that arises in the He
and Xiong case.

Tedious algebra gives a condition fory = 1, which is without loss of generality because of
the recursive definition of the problem—if debtholders prefer one over the other fory = 1, they
will prefer this choice for anyy ≥ y∗. This is because one can think of the processy hitting
y∗ as stopping the problem and the agent receivingD

(
y∗|y∗). As the paths ofy have the same

distribution up untily∗, the only difference in debt value functions has to arise from difference in
D
(
y∗|y∗). Then,

1D
(
1|y∗) =

(
y∗)−κm

(κm − κnrs) (κm − κrs)

×







(κnrs − κrs)
[
aa2 (κm − 1)

((
y∗)κp − y∗)+ κm

(
− (bb− bb2)

(
y∗)κp

− (bb2 − bb1))
]

+y∗ {aanrs(κnrs − 1) (κm − κrs) − aars (κrs − 1) (κm − κnrs)}





 .

Write the term in square brackets abstractly as

[∙] = A
(
y∗)κp + By∗ + C.

First, note that

A = (κnrs − κrs)
{
κm

[
aa2 + bb2 − bb

]
− aa2

}
< 0,

as
[
aa2 + bb2 − bb

]
= φ

ρ+φ−μA
+ r

ρ+φ − r +φ
ρ+φ = φ

[
1

ρ+φ−μA
− 1

ρ+φ

]
> 0 and aa2 =

φ
ρ+φ−μA

> 0.

The linear term is given by

B =
[
aanrs(κnrs − 1) (κm − κrs) − aars (κrs − 1) (κm − κnrs) − (κnrs − κrs) aa2 (κm − 1)

]
.

First, note that aanrs(κnrs− 1) (κm − κrs) − aars (κrs − 1) (κm − κnrs) < 0 as aanrs > aars and
κnrs > κnrs > 1. Second, observe that− (κnrs − κrs) aa2 (κm − 1) > 0. Thus, the sign ofB is
ambiguous.

Finally, note that

C = (κnrs − κrs) κm
[
bb1 − bb2

]
< 0,

as bb1 > bb2 by assumptionL < 1.
We note that by parameter assumptions we haveκp > 1. This means that for anyy∗ ∈ (0, 1),

we haveA
(
y∗)κp + By∗ +C > (A + B) y∗ +C asA < 0. Definey by (A + B) y+C = 0 ⇐⇒

y ≡ −C
A+B . Note thaty ∈ (0, 1) is the same as the conditionA + B + C > 0, which immediately

implies that(A + B) y∗ + C is upward sloping. �
We can similarly present a check fory∗ > 1, but this is as easily reduced to a simple interval

rule. Again, we use an arbitrary pointy ≥ y∗ and check the difference in the debt value functions.
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Lemma 5. Fix an exogenousrun-thresholdy∗ ∈ (1, yL ). Then, risk-shifting during the run is
beneficial to the debtholders that run aty∗ if and only if











yκ+nrs (aa1nrs − aa2nrs) {(κ+nrs− 1) (κm − κ+rs)}

+y {(κm − κ+rs) (κ+nrs− 1) aa2nrs − (κm − κ+nrs) (κ+rs − 1) aa2rs}

+ (bb1 − bb2)
{
κ+nrsyκ-nrs (κm − κ+rs) − κ+rsyκ-rs (κm − κ+nrs)

}

+ (bb3 − bb2) (κ+rs − κ+nrs) κm











> 0,

where κ+nrs/κ−nrs are the positive and negative root during a run under no risk-shifting,
κ+rs/κ−rs are the positive and negative root during a run under risk-shifting,κm/κp are the
negative and positive root outside of the run, andaainrs/aairs/bbi are constants of the model as
defined in Lemma1.

The value function G (y) given y∗, R̄

Lemma 6. Given a rollover thresholdy∗ and switching thresholds̄y1, ȳ2, ȳ3, the government’s
expected bailout costs are

G
(
y|y∗, R̄

)
= CCC+ (y) yη(y)+ + CCC− (y) yη(y)−

+δ1{y<y∗}

[
−aa(y)

ρ + φ + θδ − μ
y +

1 − bb(y)

ρ + φ + θδ

]

+δ1{y<y∗}
CC+ (y)

σ2

2 κ (y)2+ +
(
μ − σ2

2

)
κ (y)+ − (ρ + φ + θδ)

yκ(y)+

+δ1{y<y∗}
CC− (y)

σ2

2 κ (y)2− +
(
μ − σ2

2

)
κ (y)− − (ρ + φ + θδ)

yκ(y)− ,

where the appropriate{aa, bb, κ±, η±, CC±} from Proposition1 apply in each of the inter-
vals composed of the boundary points 0, 1, yL and the rollover and risk-shifting thresholds{
y∗, ȳ1, ȳ2, ȳ3

}
. The coefficientsCCC± (∙) are step functions solving a linear system stemming

from value matching and smooth pasting at the boundary points. The appropriate boundary
conditions areCCC∞

+ = 0 andCCC0
− = 0.

Proof. We observe the following: first, in equilibrium, a freeze only occurs when debt is worth
less than its face value, i.e.,D (y) < 1, which occurs fory < y∗, and thusG (y) > 0. Second, we
must have limy→∞ G (y) = 0, as the incidence of having to supply interim financing becomes
negligible for largey as no freezes occur.

The associated HJB for the government’s loss function that derives from Equation (4) is

ρG = μyGy +
σ2

2
y2Gyy − φG − 1{y<y∗}θδG + δ1{y<y∗} [1 − D (y)] ,

where the first two terms on the RHS are once again the Ito terms ofy, the third term reflects the
intensity of realization, the fourth term the intensity of default without a credit line/bailout, and the
last term the liquidity injection stemming from the continuous bailouts on

(
0, y∗). The equation

is straightforward to solve—it is a linear ODE with two independent solutions from the quadratic
equation, plus a particular part tied to the expressionD (y) that is available in closed form as it is
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also of polynomial form. Note thatG has the same fundamental equation asE, thus we use the

same parametersη±. Note that asκ± 6= η± on y < y∗, we know thatσ
2

2 κ2
± +

(
μ − σ2

2

)
κ± −

(ρ + φ + θδ) 6= 0, so division by zero does not arise. �
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